Step |
Hyp |
Ref |
Expression |
1 |
|
fprodcncf.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
2 |
|
fprodcncf.b |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
3 |
|
fprodcncf.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
4 |
|
fprodcncf.cn |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
5 |
|
prodeq1 |
⊢ ( 𝑤 = ∅ → ∏ 𝑘 ∈ 𝑤 𝐶 = ∏ 𝑘 ∈ ∅ 𝐶 ) |
6 |
5
|
mpteq2dv |
⊢ ( 𝑤 = ∅ → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ∅ 𝐶 ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑤 = ∅ → ( ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑤 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ↔ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ∅ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) ) |
8 |
|
prodeq1 |
⊢ ( 𝑤 = 𝑧 → ∏ 𝑘 ∈ 𝑤 𝐶 = ∏ 𝑘 ∈ 𝑧 𝐶 ) |
9 |
8
|
mpteq2dv |
⊢ ( 𝑤 = 𝑧 → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑤 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ↔ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) ) |
11 |
|
prodeq1 |
⊢ ( 𝑤 = ( 𝑧 ∪ { 𝑦 } ) → ∏ 𝑘 ∈ 𝑤 𝐶 = ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) 𝐶 ) |
12 |
11
|
mpteq2dv |
⊢ ( 𝑤 = ( 𝑧 ∪ { 𝑦 } ) → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) 𝐶 ) ) |
13 |
12
|
eleq1d |
⊢ ( 𝑤 = ( 𝑧 ∪ { 𝑦 } ) → ( ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑤 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ↔ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) ) |
14 |
|
prodeq1 |
⊢ ( 𝑤 = 𝐵 → ∏ 𝑘 ∈ 𝑤 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) |
15 |
14
|
mpteq2dv |
⊢ ( 𝑤 = 𝐵 → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑤 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝐵 𝐶 ) ) |
16 |
15
|
eleq1d |
⊢ ( 𝑤 = 𝐵 → ( ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑤 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ↔ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝐵 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) ) |
17 |
|
prod0 |
⊢ ∏ 𝑘 ∈ ∅ 𝐶 = 1 |
18 |
17
|
a1i |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ∅ 𝐶 = 1 ) |
19 |
18
|
mpteq2dv |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ∅ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 1 ) ) |
20 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
21 |
|
ssidd |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
22 |
1 20 21
|
constcncfg |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 1 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
23 |
19 22
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ∅ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
24 |
|
nfcv |
⊢ Ⅎ 𝑢 ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) 𝐶 |
25 |
|
nfcv |
⊢ Ⅎ 𝑥 ( 𝑧 ∪ { 𝑦 } ) |
26 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 |
27 |
25 26
|
nfcprod |
⊢ Ⅎ 𝑥 ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) ⦋ 𝑢 / 𝑥 ⦌ 𝐶 |
28 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑢 → 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
29 |
28
|
adantr |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) ) → 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
30 |
29
|
prodeq2dv |
⊢ ( 𝑥 = 𝑢 → ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) 𝐶 = ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
31 |
24 27 30
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) 𝐶 ) = ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
32 |
31
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) 𝐶 ) = ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ) |
33 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) |
34 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 |
35 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) → 𝐵 ∈ Fin ) |
36 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) → 𝑧 ⊆ 𝐵 ) |
37 |
|
ssfi |
⊢ ( ( 𝐵 ∈ Fin ∧ 𝑧 ⊆ 𝐵 ) → 𝑧 ∈ Fin ) |
38 |
35 36 37
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) → 𝑧 ∈ Fin ) |
39 |
38
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) → 𝑧 ∈ Fin ) |
40 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → 𝑧 ∈ Fin ) |
41 |
|
vex |
⊢ 𝑦 ∈ V |
42 |
41
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → 𝑦 ∈ V ) |
43 |
|
eldifn |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) → ¬ 𝑦 ∈ 𝑧 ) |
44 |
43
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) → ¬ 𝑦 ∈ 𝑧 ) |
45 |
44
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → ¬ 𝑦 ∈ 𝑧 ) |
46 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑧 ) → 𝜑 ) |
47 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑧 ) → 𝑢 ∈ 𝐴 ) |
48 |
36
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) → 𝑧 ⊆ 𝐵 ) |
49 |
48
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑧 ) → 𝑧 ⊆ 𝐵 ) |
50 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑧 ) → 𝑘 ∈ 𝑧 ) |
51 |
49 50
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑧 ) → 𝑘 ∈ 𝐵 ) |
52 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) |
53 |
26
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ |
54 |
52 53
|
nfim |
⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
55 |
|
eleq1w |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 ∈ 𝐴 ↔ 𝑢 ∈ 𝐴 ) ) |
56 |
55
|
3anbi2d |
⊢ ( 𝑥 = 𝑢 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ) |
57 |
28
|
eleq1d |
⊢ ( 𝑥 = 𝑢 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) ) |
58 |
56 57
|
imbi12d |
⊢ ( 𝑥 = 𝑢 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) ) ) |
59 |
54 58 3
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
60 |
46 47 51 59
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝑧 ) → ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
61 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑦 → ⦋ 𝑢 / 𝑥 ⦌ 𝐶 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
62 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → 𝜑 ) |
63 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) → 𝑦 ∈ 𝐵 ) |
64 |
63
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) → 𝑦 ∈ 𝐵 ) |
65 |
64
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) |
66 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ 𝐴 ) |
67 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐴 ) → 𝜑 ) |
68 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐴 ) → 𝑢 ∈ 𝐴 ) |
69 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) |
70 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) |
71 |
|
nfcv |
⊢ Ⅎ 𝑘 ℂ |
72 |
34 71
|
nfel |
⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ |
73 |
70 72
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
74 |
|
eleq1w |
⊢ ( 𝑘 = 𝑦 → ( 𝑘 ∈ 𝐵 ↔ 𝑦 ∈ 𝐵 ) ) |
75 |
74
|
3anbi3d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ) ) |
76 |
61
|
eleq1d |
⊢ ( 𝑘 = 𝑦 → ( ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ↔ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) ) |
77 |
75 76
|
imbi12d |
⊢ ( 𝑘 = 𝑦 → ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) ) ) |
78 |
73 77 59
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
79 |
67 68 69 78
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ∧ 𝑢 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
80 |
62 65 66 79
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ∈ ℂ ) |
81 |
33 34 40 42 45 60 61 80
|
fprodsplitsn |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ 𝑢 ∈ 𝐴 ) → ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) ⦋ 𝑢 / 𝑥 ⦌ 𝐶 = ( ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 · ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ) |
82 |
81
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) → ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) = ( 𝑢 ∈ 𝐴 ↦ ( ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 · ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ) ) |
83 |
82
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) → ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) = ( 𝑢 ∈ 𝐴 ↦ ( ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 · ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ) ) |
84 |
|
nfcv |
⊢ Ⅎ 𝑢 ∏ 𝑘 ∈ 𝑧 𝐶 |
85 |
|
nfcv |
⊢ Ⅎ 𝑥 𝑧 |
86 |
85 26
|
nfcprod |
⊢ Ⅎ 𝑥 ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 |
87 |
28
|
adantr |
⊢ ( ( 𝑥 = 𝑢 ∧ 𝑘 ∈ 𝑧 ) → 𝐶 = ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
88 |
87
|
prodeq2dv |
⊢ ( 𝑥 = 𝑢 → ∏ 𝑘 ∈ 𝑧 𝐶 = ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
89 |
84 86 88
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) = ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
90 |
89
|
eqcomi |
⊢ ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) |
91 |
90
|
a1i |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) → ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ) |
92 |
|
id |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
93 |
91 92
|
eqeltrd |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) → ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
94 |
93
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) → ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
95 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) |
96 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
97 |
96 34
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
98 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐴 –cn→ ℂ ) |
99 |
97 98
|
nfel |
⊢ Ⅎ 𝑘 ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) |
100 |
95 99
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
101 |
74
|
anbi2d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) ) ) |
102 |
61
|
adantr |
⊢ ( ( 𝑘 = 𝑦 ∧ 𝑢 ∈ 𝐴 ) → ⦋ 𝑢 / 𝑥 ⦌ 𝐶 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
103 |
102
|
mpteq2dva |
⊢ ( 𝑘 = 𝑦 → ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) = ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ) |
104 |
103
|
eleq1d |
⊢ ( 𝑘 = 𝑦 → ( ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ↔ ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) ) |
105 |
101 104
|
imbi12d |
⊢ ( 𝑘 = 𝑦 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) ) ) |
106 |
|
nfcv |
⊢ Ⅎ 𝑢 𝐶 |
107 |
106 26 28
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) |
108 |
107 4
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
109 |
100 105 108
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
110 |
64 109
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) → ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
111 |
110
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) → ( 𝑢 ∈ 𝐴 ↦ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
112 |
94 111
|
mulcncf |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) → ( 𝑢 ∈ 𝐴 ↦ ( ∏ 𝑘 ∈ 𝑧 ⦋ 𝑢 / 𝑥 ⦌ 𝐶 · ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
113 |
83 112
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) → ( 𝑢 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) ⦋ 𝑢 / 𝑥 ⦌ 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
114 |
32 113
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) ∧ ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
115 |
114
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑧 ⊆ 𝐵 ∧ 𝑦 ∈ ( 𝐵 ∖ 𝑧 ) ) ) → ( ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝑧 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ ( 𝑧 ∪ { 𝑦 } ) 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) ) |
116 |
7 10 13 16 23 115 2
|
findcard2d |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ∏ 𝑘 ∈ 𝐵 𝐶 ) ∈ ( 𝐴 –cn→ ℂ ) ) |