Step |
Hyp |
Ref |
Expression |
1 |
|
fprodcnlem.1 |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
fprodcnlem.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
3 |
|
fprodcnlem.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
4 |
|
fprodcnlem.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
5 |
|
fprodcnlem.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
6 |
|
fprodcnlem.z |
⊢ ( 𝜑 → 𝑍 ⊆ 𝐴 ) |
7 |
|
fprodcnlem.w |
⊢ ( 𝜑 → 𝑊 ∈ ( 𝐴 ∖ 𝑍 ) ) |
8 |
|
fprodcnlem.p |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑍 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
9 |
|
nfv |
⊢ Ⅎ 𝑘 𝑥 ∈ 𝑋 |
10 |
1 9
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) |
11 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑊 / 𝑘 ⦌ 𝐵 |
12 |
4 6
|
ssfid |
⊢ ( 𝜑 → 𝑍 ∈ Fin ) |
13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑍 ∈ Fin ) |
14 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑊 ∈ ( 𝐴 ∖ 𝑍 ) ) |
15 |
14
|
eldifbd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ¬ 𝑊 ∈ 𝑍 ) |
16 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝐴 ) |
17 |
16
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝐴 ) |
18 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
19 |
2
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
20 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
21 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℂ ) |
22 |
18 20 5 21
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℂ ) |
23 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) |
24 |
23
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℂ ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℂ ) |
25 |
22 24
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℂ ) |
26 |
25
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℂ ) |
27 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑥 ∈ 𝑋 ) |
28 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
29 |
26 27 28
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
30 |
17 29
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
31 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑊 → 𝐵 = ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) |
32 |
14
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑊 ∈ 𝐴 ) |
33 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) → 𝑊 ∈ 𝐴 ) |
34 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑊 |
35 |
|
nfv |
⊢ Ⅎ 𝑘 𝑊 ∈ 𝐴 |
36 |
10 35
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) |
37 |
11
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ |
38 |
36 37
|
nfim |
⊢ Ⅎ 𝑘 ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) → ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
39 |
|
eleq1 |
⊢ ( 𝑘 = 𝑊 → ( 𝑘 ∈ 𝐴 ↔ 𝑊 ∈ 𝐴 ) ) |
40 |
39
|
anbi2d |
⊢ ( 𝑘 = 𝑊 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) ) ) |
41 |
31
|
eleq1d |
⊢ ( 𝑘 = 𝑊 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
42 |
40 41
|
imbi12d |
⊢ ( 𝑘 = 𝑊 → ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) → ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) ) |
43 |
34 38 42 29
|
vtoclgf |
⊢ ( 𝑊 ∈ 𝐴 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) → ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
44 |
33 43
|
mpcom |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) → ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
45 |
32 44
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
46 |
10 11 13 14 15 30 31 45
|
fprodsplitsn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∏ 𝑘 ∈ ( 𝑍 ∪ { 𝑊 } ) 𝐵 = ( ∏ 𝑘 ∈ 𝑍 𝐵 · ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ) |
47 |
46
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑍 ∪ { 𝑊 } ) 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ( ∏ 𝑘 ∈ 𝑍 𝐵 · ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ) ) |
48 |
7
|
eldifad |
⊢ ( 𝜑 → 𝑊 ∈ 𝐴 ) |
49 |
1 35
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑊 ∈ 𝐴 ) |
50 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑋 |
51 |
50 11
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) |
52 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝐽 Cn 𝐾 ) |
53 |
51 52
|
nfel |
⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) |
54 |
49 53
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑊 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
55 |
39
|
anbi2d |
⊢ ( 𝑘 = 𝑊 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑊 ∈ 𝐴 ) ) ) |
56 |
31
|
mpteq2dv |
⊢ ( 𝑘 = 𝑊 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ) |
57 |
56
|
eleq1d |
⊢ ( 𝑘 = 𝑊 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
58 |
55 57
|
imbi12d |
⊢ ( 𝑘 = 𝑊 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ↔ ( ( 𝜑 ∧ 𝑊 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
59 |
5
|
idi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
60 |
34 54 58 59
|
vtoclgf |
⊢ ( 𝑊 ∈ 𝐴 → ( ( 𝜑 ∧ 𝑊 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
61 |
60
|
anabsi7 |
⊢ ( ( 𝜑 ∧ 𝑊 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
62 |
48 61
|
mpdan |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
63 |
2
|
mulcn |
⊢ · ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
64 |
63
|
a1i |
⊢ ( 𝜑 → · ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) |
65 |
3 8 62 64
|
cnmpt12f |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ∏ 𝑘 ∈ 𝑍 𝐵 · ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
66 |
47 65
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑍 ∪ { 𝑊 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |