| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodcnlem.1 |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
fprodcnlem.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
| 3 |
|
fprodcnlem.j |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 |
|
fprodcnlem.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 5 |
|
fprodcnlem.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 6 |
|
fprodcnlem.z |
⊢ ( 𝜑 → 𝑍 ⊆ 𝐴 ) |
| 7 |
|
fprodcnlem.w |
⊢ ( 𝜑 → 𝑊 ∈ ( 𝐴 ∖ 𝑍 ) ) |
| 8 |
|
fprodcnlem.p |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ 𝑍 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 9 |
|
nfv |
⊢ Ⅎ 𝑘 𝑥 ∈ 𝑋 |
| 10 |
1 9
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) |
| 11 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑊 / 𝑘 ⦌ 𝐵 |
| 12 |
4 6
|
ssfid |
⊢ ( 𝜑 → 𝑍 ∈ Fin ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑍 ∈ Fin ) |
| 14 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑊 ∈ ( 𝐴 ∖ 𝑍 ) ) |
| 15 |
14
|
eldifbd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ¬ 𝑊 ∈ 𝑍 ) |
| 16 |
6
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝐴 ) |
| 17 |
16
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑍 ) → 𝑘 ∈ 𝐴 ) |
| 18 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 19 |
2
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
| 20 |
19
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 21 |
|
cnf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℂ ) |
| 22 |
18 20 5 21
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℂ ) |
| 23 |
|
eqid |
⊢ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) |
| 24 |
23
|
fmpt |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℂ ↔ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ℂ ) |
| 25 |
22 24
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℂ ) |
| 26 |
25
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℂ ) |
| 27 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑥 ∈ 𝑋 ) |
| 28 |
|
rspa |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 𝐵 ∈ ℂ ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ℂ ) |
| 29 |
26 27 28
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 30 |
17 29
|
syldan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝑍 ) → 𝐵 ∈ ℂ ) |
| 31 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑊 → 𝐵 = ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) |
| 32 |
14
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑊 ∈ 𝐴 ) |
| 33 |
|
nfv |
⊢ Ⅎ 𝑘 𝑊 ∈ 𝐴 |
| 34 |
10 33
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) |
| 35 |
11
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 36 |
34 35
|
nfim |
⊢ Ⅎ 𝑘 ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) → ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 37 |
|
eleq1 |
⊢ ( 𝑘 = 𝑊 → ( 𝑘 ∈ 𝐴 ↔ 𝑊 ∈ 𝐴 ) ) |
| 38 |
37
|
anbi2d |
⊢ ( 𝑘 = 𝑊 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) ) ) |
| 39 |
31
|
eleq1d |
⊢ ( 𝑘 = 𝑊 → ( 𝐵 ∈ ℂ ↔ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 40 |
38 39
|
imbi12d |
⊢ ( 𝑘 = 𝑊 → ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) → ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 41 |
36 40 29
|
vtoclg1f |
⊢ ( 𝑊 ∈ 𝐴 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) → ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 42 |
41
|
anabsi7 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑊 ∈ 𝐴 ) → ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 43 |
32 42
|
mpdan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 44 |
10 11 13 14 15 30 31 43
|
fprodsplitsn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∏ 𝑘 ∈ ( 𝑍 ∪ { 𝑊 } ) 𝐵 = ( ∏ 𝑘 ∈ 𝑍 𝐵 · ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ) |
| 45 |
44
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑍 ∪ { 𝑊 } ) 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ( ∏ 𝑘 ∈ 𝑍 𝐵 · ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ) ) |
| 46 |
7
|
eldifad |
⊢ ( 𝜑 → 𝑊 ∈ 𝐴 ) |
| 47 |
1 33
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑊 ∈ 𝐴 ) |
| 48 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑋 |
| 49 |
48 11
|
nfmpt |
⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) |
| 50 |
49
|
nfel1 |
⊢ Ⅎ 𝑘 ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) |
| 51 |
47 50
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑊 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 52 |
37
|
anbi2d |
⊢ ( 𝑘 = 𝑊 → ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) ↔ ( 𝜑 ∧ 𝑊 ∈ 𝐴 ) ) ) |
| 53 |
31
|
mpteq2dv |
⊢ ( 𝑘 = 𝑊 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) = ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ) |
| 54 |
53
|
eleq1d |
⊢ ( 𝑘 = 𝑊 → ( ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 55 |
52 54
|
imbi12d |
⊢ ( 𝑘 = 𝑊 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ↔ ( ( 𝜑 ∧ 𝑊 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) ) |
| 56 |
51 55 5
|
vtoclg1f |
⊢ ( 𝑊 ∈ 𝐴 → ( ( 𝜑 ∧ 𝑊 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) ) |
| 57 |
56
|
anabsi7 |
⊢ ( ( 𝜑 ∧ 𝑊 ∈ 𝐴 ) → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 58 |
46 57
|
mpdan |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 59 |
19
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
| 60 |
2
|
mpomulcn |
⊢ ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) |
| 61 |
60
|
a1i |
⊢ ( 𝜑 → ( 𝑢 ∈ ℂ , 𝑣 ∈ ℂ ↦ ( 𝑢 · 𝑣 ) ) ∈ ( ( 𝐾 ×t 𝐾 ) Cn 𝐾 ) ) |
| 62 |
|
oveq12 |
⊢ ( ( 𝑢 = ∏ 𝑘 ∈ 𝑍 𝐵 ∧ 𝑣 = ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) → ( 𝑢 · 𝑣 ) = ( ∏ 𝑘 ∈ 𝑍 𝐵 · ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ) |
| 63 |
3 8 58 59 59 61 62
|
cnmpt12 |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( ∏ 𝑘 ∈ 𝑍 𝐵 · ⦋ 𝑊 / 𝑘 ⦌ 𝐵 ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 64 |
45 63
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ∏ 𝑘 ∈ ( 𝑍 ∪ { 𝑊 } ) 𝐵 ) ∈ ( 𝐽 Cn 𝐾 ) ) |