Metamath Proof Explorer


Theorem fprodcom

Description: Interchange product order. (Contributed by Scott Fenton, 2-Feb-2018)

Ref Expression
Hypotheses fprodcom.1 ( 𝜑𝐴 ∈ Fin )
fprodcom.2 ( 𝜑𝐵 ∈ Fin )
fprodcom.3 ( ( 𝜑 ∧ ( 𝑗𝐴𝑘𝐵 ) ) → 𝐶 ∈ ℂ )
Assertion fprodcom ( 𝜑 → ∏ 𝑗𝐴𝑘𝐵 𝐶 = ∏ 𝑘𝐵𝑗𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 fprodcom.1 ( 𝜑𝐴 ∈ Fin )
2 fprodcom.2 ( 𝜑𝐵 ∈ Fin )
3 fprodcom.3 ( ( 𝜑 ∧ ( 𝑗𝐴𝑘𝐵 ) ) → 𝐶 ∈ ℂ )
4 2 adantr ( ( 𝜑𝑗𝐴 ) → 𝐵 ∈ Fin )
5 ancom ( ( 𝑗𝐴𝑘𝐵 ) ↔ ( 𝑘𝐵𝑗𝐴 ) )
6 5 a1i ( 𝜑 → ( ( 𝑗𝐴𝑘𝐵 ) ↔ ( 𝑘𝐵𝑗𝐴 ) ) )
7 1 2 4 6 3 fprodcom2 ( 𝜑 → ∏ 𝑗𝐴𝑘𝐵 𝐶 = ∏ 𝑘𝐵𝑗𝐴 𝐶 )