Step |
Hyp |
Ref |
Expression |
1 |
|
fprodcom2.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fprodcom2.2 |
⊢ ( 𝜑 → 𝐶 ∈ Fin ) |
3 |
|
fprodcom2.3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ Fin ) |
4 |
|
fprodcom2.4 |
⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ↔ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) |
5 |
|
fprodcom2.5 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐸 ∈ ℂ ) |
6 |
|
relxp |
⊢ Rel ( { 𝑗 } × 𝐵 ) |
7 |
6
|
rgenw |
⊢ ∀ 𝑗 ∈ 𝐴 Rel ( { 𝑗 } × 𝐵 ) |
8 |
|
reliun |
⊢ ( Rel ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∀ 𝑗 ∈ 𝐴 Rel ( { 𝑗 } × 𝐵 ) ) |
9 |
7 8
|
mpbir |
⊢ Rel ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) |
10 |
|
relcnv |
⊢ Rel ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) |
11 |
|
ancom |
⊢ ( ( 𝑥 = 𝑗 ∧ 𝑦 = 𝑘 ) ↔ ( 𝑦 = 𝑘 ∧ 𝑥 = 𝑗 ) ) |
12 |
|
vex |
⊢ 𝑥 ∈ V |
13 |
|
vex |
⊢ 𝑦 ∈ V |
14 |
12 13
|
opth |
⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ↔ ( 𝑥 = 𝑗 ∧ 𝑦 = 𝑘 ) ) |
15 |
13 12
|
opth |
⊢ ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ↔ ( 𝑦 = 𝑘 ∧ 𝑥 = 𝑗 ) ) |
16 |
11 14 15
|
3bitr4i |
⊢ ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ↔ 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ) |
17 |
16
|
a1i |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ↔ 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ) ) |
18 |
17 4
|
anbi12d |
⊢ ( 𝜑 → ( ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ↔ ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) ) |
19 |
18
|
2exbidv |
⊢ ( 𝜑 → ( ∃ 𝑗 ∃ 𝑘 ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ↔ ∃ 𝑗 ∃ 𝑘 ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) ) |
20 |
|
eliunxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗 ∃ 𝑘 ( 〈 𝑥 , 𝑦 〉 = 〈 𝑗 , 𝑘 〉 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) ) |
21 |
12 13
|
opelcnv |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ↔ 〈 𝑦 , 𝑥 〉 ∈ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) |
22 |
|
eliunxp |
⊢ ( 〈 𝑦 , 𝑥 〉 ∈ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ↔ ∃ 𝑘 ∃ 𝑗 ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) |
23 |
|
excom |
⊢ ( ∃ 𝑘 ∃ 𝑗 ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ↔ ∃ 𝑗 ∃ 𝑘 ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) |
24 |
21 22 23
|
3bitri |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ↔ ∃ 𝑗 ∃ 𝑘 ( 〈 𝑦 , 𝑥 〉 = 〈 𝑘 , 𝑗 〉 ∧ ( 𝑘 ∈ 𝐶 ∧ 𝑗 ∈ 𝐷 ) ) ) |
25 |
19 20 24
|
3bitr4g |
⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) ) |
26 |
9 10 25
|
eqrelrdv |
⊢ ( 𝜑 → ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) = ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) |
27 |
|
nfcv |
⊢ Ⅎ 𝑥 ( { 𝑗 } × 𝐵 ) |
28 |
|
nfcv |
⊢ Ⅎ 𝑗 { 𝑥 } |
29 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑥 / 𝑗 ⦌ 𝐵 |
30 |
28 29
|
nfxp |
⊢ Ⅎ 𝑗 ( { 𝑥 } × ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) |
31 |
|
sneq |
⊢ ( 𝑗 = 𝑥 → { 𝑗 } = { 𝑥 } ) |
32 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑥 → 𝐵 = ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) |
33 |
31 32
|
xpeq12d |
⊢ ( 𝑗 = 𝑥 → ( { 𝑗 } × 𝐵 ) = ( { 𝑥 } × ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) ) |
34 |
27 30 33
|
cbviun |
⊢ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) = ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) |
35 |
|
nfcv |
⊢ Ⅎ 𝑦 ( { 𝑘 } × 𝐷 ) |
36 |
|
nfcv |
⊢ Ⅎ 𝑘 { 𝑦 } |
37 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ 𝐷 |
38 |
36 37
|
nfxp |
⊢ Ⅎ 𝑘 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) |
39 |
|
sneq |
⊢ ( 𝑘 = 𝑦 → { 𝑘 } = { 𝑦 } ) |
40 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑦 → 𝐷 = ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) |
41 |
39 40
|
xpeq12d |
⊢ ( 𝑘 = 𝑦 → ( { 𝑘 } × 𝐷 ) = ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) |
42 |
35 38 41
|
cbviun |
⊢ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) = ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) |
43 |
42
|
cnveqi |
⊢ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) = ◡ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) |
44 |
26 34 43
|
3eqtr3g |
⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) = ◡ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) |
45 |
44
|
prodeq1d |
⊢ ( 𝜑 → ∏ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 = ∏ 𝑧 ∈ ◡ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 ) |
46 |
13 12
|
op1std |
⊢ ( 𝑤 = 〈 𝑦 , 𝑥 〉 → ( 1st ‘ 𝑤 ) = 𝑦 ) |
47 |
46
|
csbeq1d |
⊢ ( 𝑤 = 〈 𝑦 , 𝑥 〉 → ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ) |
48 |
13 12
|
op2ndd |
⊢ ( 𝑤 = 〈 𝑦 , 𝑥 〉 → ( 2nd ‘ 𝑤 ) = 𝑥 ) |
49 |
48
|
csbeq1d |
⊢ ( 𝑤 = 〈 𝑦 , 𝑥 〉 → ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
50 |
49
|
csbeq2dv |
⊢ ( 𝑤 = 〈 𝑦 , 𝑥 〉 → ⦋ 𝑦 / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
51 |
47 50
|
eqtrd |
⊢ ( 𝑤 = 〈 𝑦 , 𝑥 〉 → ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
52 |
12 13
|
op2ndd |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 2nd ‘ 𝑧 ) = 𝑦 ) |
53 |
52
|
csbeq1d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 ) |
54 |
12 13
|
op1std |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 1st ‘ 𝑧 ) = 𝑥 ) |
55 |
54
|
csbeq1d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
56 |
55
|
csbeq2dv |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ⦋ 𝑦 / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
57 |
53 56
|
eqtrd |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
58 |
|
snfi |
⊢ { 𝑦 } ∈ Fin |
59 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → 𝐴 ∈ Fin ) |
60 |
37 40
|
opeliunxp2f |
⊢ ( 〈 𝑦 , 𝑥 〉 ∈ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ↔ ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) |
61 |
21 60
|
sylbbr |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) → 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) |
62 |
61
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) |
63 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) = ◡ ∪ 𝑘 ∈ 𝐶 ( { 𝑘 } × 𝐷 ) ) |
64 |
62 63
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
65 |
|
eliun |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗 ∈ 𝐴 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ) |
66 |
64 65
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ∃ 𝑗 ∈ 𝐴 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ) |
67 |
|
simpr |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ) |
68 |
|
opelxp |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ↔ ( 𝑥 ∈ { 𝑗 } ∧ 𝑦 ∈ 𝐵 ) ) |
69 |
67 68
|
sylib |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ) → ( 𝑥 ∈ { 𝑗 } ∧ 𝑦 ∈ 𝐵 ) ) |
70 |
69
|
simpld |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑥 ∈ { 𝑗 } ) |
71 |
|
elsni |
⊢ ( 𝑥 ∈ { 𝑗 } → 𝑥 = 𝑗 ) |
72 |
70 71
|
syl |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑥 = 𝑗 ) |
73 |
|
simpl |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑗 ∈ 𝐴 ) |
74 |
72 73
|
eqeltrd |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑥 ∈ 𝐴 ) |
75 |
74
|
rexlimiva |
⊢ ( ∃ 𝑗 ∈ 𝐴 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) → 𝑥 ∈ 𝐴 ) |
76 |
66 75
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → 𝑥 ∈ 𝐴 ) |
77 |
76
|
expr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 → 𝑥 ∈ 𝐴 ) ) |
78 |
77
|
ssrdv |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⊆ 𝐴 ) |
79 |
59 78
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ∈ Fin ) |
80 |
|
xpfi |
⊢ ( ( { 𝑦 } ∈ Fin ∧ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ∈ Fin ) → ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ∈ Fin ) |
81 |
58 79 80
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ∈ Fin ) |
82 |
81
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ∈ Fin ) |
83 |
|
iunfi |
⊢ ( ( 𝐶 ∈ Fin ∧ ∀ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ∈ Fin ) → ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ∈ Fin ) |
84 |
2 82 83
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ∈ Fin ) |
85 |
|
reliun |
⊢ ( Rel ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ↔ ∀ 𝑦 ∈ 𝐶 Rel ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) |
86 |
|
relxp |
⊢ Rel ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) |
87 |
86
|
a1i |
⊢ ( 𝑦 ∈ 𝐶 → Rel ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) |
88 |
85 87
|
mprgbir |
⊢ Rel ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) |
89 |
88
|
a1i |
⊢ ( 𝜑 → Rel ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) |
90 |
|
csbeq1 |
⊢ ( 𝑥 = ( 2nd ‘ 𝑤 ) → ⦋ 𝑥 / 𝑗 ⦌ 𝐸 = ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ) |
91 |
90
|
csbeq2dv |
⊢ ( 𝑥 = ( 2nd ‘ 𝑤 ) → ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 = ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ) |
92 |
91
|
eleq1d |
⊢ ( 𝑥 = ( 2nd ‘ 𝑤 ) → ( ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ↔ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
93 |
|
csbeq1 |
⊢ ( 𝑦 = ( 1st ‘ 𝑤 ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐷 = ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 ) |
94 |
|
csbeq1 |
⊢ ( 𝑦 = ( 1st ‘ 𝑤 ) → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 = ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
95 |
94
|
eleq1d |
⊢ ( 𝑦 = ( 1st ‘ 𝑤 ) → ( ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ↔ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
96 |
93 95
|
raleqbidv |
⊢ ( 𝑦 = ( 1st ‘ 𝑤 ) → ( ∀ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ↔ ∀ 𝑥 ∈ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
97 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → 𝜑 ) |
98 |
29
|
nfcri |
⊢ Ⅎ 𝑗 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 |
99 |
71
|
equcomd |
⊢ ( 𝑥 ∈ { 𝑗 } → 𝑗 = 𝑥 ) |
100 |
99 32
|
syl |
⊢ ( 𝑥 ∈ { 𝑗 } → 𝐵 = ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) |
101 |
100
|
eleq2d |
⊢ ( 𝑥 ∈ { 𝑗 } → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) ) |
102 |
101
|
biimpa |
⊢ ( ( 𝑥 ∈ { 𝑗 } ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) |
103 |
68 102
|
sylbi |
⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) → 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) |
104 |
103
|
a1i |
⊢ ( 𝑗 ∈ 𝐴 → ( 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) → 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) ) |
105 |
98 104
|
rexlimi |
⊢ ( ∃ 𝑗 ∈ 𝐴 〈 𝑥 , 𝑦 〉 ∈ ( { 𝑗 } × 𝐵 ) → 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) |
106 |
66 105
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) |
107 |
5
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐵 𝐸 ∈ ℂ ) |
108 |
|
nfcsb1v |
⊢ Ⅎ 𝑗 ⦋ 𝑥 / 𝑗 ⦌ 𝐸 |
109 |
108
|
nfel1 |
⊢ Ⅎ 𝑗 ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ |
110 |
29 109
|
nfralw |
⊢ Ⅎ 𝑗 ∀ 𝑘 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ |
111 |
|
csbeq1a |
⊢ ( 𝑗 = 𝑥 → 𝐸 = ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
112 |
111
|
eleq1d |
⊢ ( 𝑗 = 𝑥 → ( 𝐸 ∈ ℂ ↔ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
113 |
32 112
|
raleqbidv |
⊢ ( 𝑗 = 𝑥 → ( ∀ 𝑘 ∈ 𝐵 𝐸 ∈ ℂ ↔ ∀ 𝑘 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
114 |
110 113
|
rspc |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐵 𝐸 ∈ ℂ → ∀ 𝑘 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
115 |
107 114
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∀ 𝑘 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
116 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 |
117 |
116
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ |
118 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑦 → ⦋ 𝑥 / 𝑗 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
119 |
118
|
eleq1d |
⊢ ( 𝑘 = 𝑦 → ( ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ↔ ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
120 |
117 119
|
rspc |
⊢ ( 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 → ( ∀ 𝑘 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
121 |
115 120
|
syl5com |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) ) |
122 |
121
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) ) → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
123 |
97 76 106 122
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ 𝐶 ∧ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
124 |
123
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐶 ∀ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
125 |
124
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ∀ 𝑦 ∈ 𝐶 ∀ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
126 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) |
127 |
|
eliun |
⊢ ( 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ↔ ∃ 𝑦 ∈ 𝐶 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) |
128 |
126 127
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ∃ 𝑦 ∈ 𝐶 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) |
129 |
|
xp1st |
⊢ ( 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) → ( 1st ‘ 𝑤 ) ∈ { 𝑦 } ) |
130 |
129
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ( 1st ‘ 𝑤 ) ∈ { 𝑦 } ) |
131 |
|
elsni |
⊢ ( ( 1st ‘ 𝑤 ) ∈ { 𝑦 } → ( 1st ‘ 𝑤 ) = 𝑦 ) |
132 |
130 131
|
syl |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ( 1st ‘ 𝑤 ) = 𝑦 ) |
133 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → 𝑦 ∈ 𝐶 ) |
134 |
132 133
|
eqeltrd |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ( 1st ‘ 𝑤 ) ∈ 𝐶 ) |
135 |
134
|
rexlimiva |
⊢ ( ∃ 𝑦 ∈ 𝐶 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) → ( 1st ‘ 𝑤 ) ∈ 𝐶 ) |
136 |
128 135
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ( 1st ‘ 𝑤 ) ∈ 𝐶 ) |
137 |
96 125 136
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ∀ 𝑥 ∈ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
138 |
|
xp2nd |
⊢ ( 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) → ( 2nd ‘ 𝑤 ) ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) |
139 |
138
|
adantl |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ( 2nd ‘ 𝑤 ) ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) |
140 |
132
|
csbeq1d |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 = ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) |
141 |
139 140
|
eleqtrrd |
⊢ ( ( 𝑦 ∈ 𝐶 ∧ 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ( 2nd ‘ 𝑤 ) ∈ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 ) |
142 |
141
|
rexlimiva |
⊢ ( ∃ 𝑦 ∈ 𝐶 𝑤 ∈ ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) → ( 2nd ‘ 𝑤 ) ∈ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 ) |
143 |
128 142
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ( 2nd ‘ 𝑤 ) ∈ ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ 𝐷 ) |
144 |
92 137 143
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ) → ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ∈ ℂ ) |
145 |
51 57 84 89 144
|
fprodcnv |
⊢ ( 𝜑 → ∏ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 = ∏ 𝑧 ∈ ◡ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 ) |
146 |
45 145
|
eqtr4d |
⊢ ( 𝜑 → ∏ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 = ∏ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ) |
147 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 𝐵 ∈ Fin ) |
148 |
29
|
nfel1 |
⊢ Ⅎ 𝑗 ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ∈ Fin |
149 |
32
|
eleq1d |
⊢ ( 𝑗 = 𝑥 → ( 𝐵 ∈ Fin ↔ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ∈ Fin ) ) |
150 |
148 149
|
rspc |
⊢ ( 𝑥 ∈ 𝐴 → ( ∀ 𝑗 ∈ 𝐴 𝐵 ∈ Fin → ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ∈ Fin ) ) |
151 |
147 150
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ∈ Fin ) |
152 |
57 1 151 122
|
fprod2d |
⊢ ( 𝜑 → ∏ 𝑥 ∈ 𝐴 ∏ 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 = ∏ 𝑧 ∈ ∪ 𝑥 ∈ 𝐴 ( { 𝑥 } × ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ) ⦋ ( 2nd ‘ 𝑧 ) / 𝑘 ⦌ ⦋ ( 1st ‘ 𝑧 ) / 𝑗 ⦌ 𝐸 ) |
153 |
51 2 79 123
|
fprod2d |
⊢ ( 𝜑 → ∏ 𝑦 ∈ 𝐶 ∏ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 = ∏ 𝑤 ∈ ∪ 𝑦 ∈ 𝐶 ( { 𝑦 } × ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ) ⦋ ( 1st ‘ 𝑤 ) / 𝑘 ⦌ ⦋ ( 2nd ‘ 𝑤 ) / 𝑗 ⦌ 𝐸 ) |
154 |
146 152 153
|
3eqtr4d |
⊢ ( 𝜑 → ∏ 𝑥 ∈ 𝐴 ∏ 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 = ∏ 𝑦 ∈ 𝐶 ∏ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
155 |
|
nfcv |
⊢ Ⅎ 𝑥 ∏ 𝑘 ∈ 𝐵 𝐸 |
156 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑦 |
157 |
156 108
|
nfcsbw |
⊢ Ⅎ 𝑗 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 |
158 |
29 157
|
nfcprod |
⊢ Ⅎ 𝑗 ∏ 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 |
159 |
|
nfcv |
⊢ Ⅎ 𝑦 𝐸 |
160 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑦 / 𝑘 ⦌ 𝐸 |
161 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑦 → 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ 𝐸 ) |
162 |
159 160 161
|
cbvprodi |
⊢ ∏ 𝑘 ∈ 𝐵 𝐸 = ∏ 𝑦 ∈ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ 𝐸 |
163 |
111
|
csbeq2dv |
⊢ ( 𝑗 = 𝑥 → ⦋ 𝑦 / 𝑘 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
164 |
163
|
adantr |
⊢ ( ( 𝑗 = 𝑥 ∧ 𝑦 ∈ 𝐵 ) → ⦋ 𝑦 / 𝑘 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
165 |
32 164
|
prodeq12dv |
⊢ ( 𝑗 = 𝑥 → ∏ 𝑦 ∈ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ 𝐸 = ∏ 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
166 |
162 165
|
eqtrid |
⊢ ( 𝑗 = 𝑥 → ∏ 𝑘 ∈ 𝐵 𝐸 = ∏ 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
167 |
155 158 166
|
cbvprodi |
⊢ ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐸 = ∏ 𝑥 ∈ 𝐴 ∏ 𝑦 ∈ ⦋ 𝑥 / 𝑗 ⦌ 𝐵 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 |
168 |
|
nfcv |
⊢ Ⅎ 𝑦 ∏ 𝑗 ∈ 𝐷 𝐸 |
169 |
37 116
|
nfcprod |
⊢ Ⅎ 𝑘 ∏ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 |
170 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐸 |
171 |
170 108 111
|
cbvprodi |
⊢ ∏ 𝑗 ∈ 𝐷 𝐸 = ∏ 𝑥 ∈ 𝐷 ⦋ 𝑥 / 𝑗 ⦌ 𝐸 |
172 |
118
|
adantr |
⊢ ( ( 𝑘 = 𝑦 ∧ 𝑥 ∈ 𝐷 ) → ⦋ 𝑥 / 𝑗 ⦌ 𝐸 = ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
173 |
40 172
|
prodeq12dv |
⊢ ( 𝑘 = 𝑦 → ∏ 𝑥 ∈ 𝐷 ⦋ 𝑥 / 𝑗 ⦌ 𝐸 = ∏ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
174 |
171 173
|
eqtrid |
⊢ ( 𝑘 = 𝑦 → ∏ 𝑗 ∈ 𝐷 𝐸 = ∏ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 ) |
175 |
168 169 174
|
cbvprodi |
⊢ ∏ 𝑘 ∈ 𝐶 ∏ 𝑗 ∈ 𝐷 𝐸 = ∏ 𝑦 ∈ 𝐶 ∏ 𝑥 ∈ ⦋ 𝑦 / 𝑘 ⦌ 𝐷 ⦋ 𝑦 / 𝑘 ⦌ ⦋ 𝑥 / 𝑗 ⦌ 𝐸 |
176 |
154 167 175
|
3eqtr4g |
⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐸 = ∏ 𝑘 ∈ 𝐶 ∏ 𝑗 ∈ 𝐷 𝐸 ) |