| Step | Hyp | Ref | Expression | 
						
							| 1 |  | exp0 | ⊢ ( 𝐵  ∈  ℂ  →  ( 𝐵 ↑ 0 )  =  1 ) | 
						
							| 2 | 1 | eqcomd | ⊢ ( 𝐵  ∈  ℂ  →  1  =  ( 𝐵 ↑ 0 ) ) | 
						
							| 3 |  | prodeq1 | ⊢ ( 𝐴  =  ∅  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ∏ 𝑘  ∈  ∅ 𝐵 ) | 
						
							| 4 |  | prod0 | ⊢ ∏ 𝑘  ∈  ∅ 𝐵  =  1 | 
						
							| 5 | 3 4 | eqtrdi | ⊢ ( 𝐴  =  ∅  →  ∏ 𝑘  ∈  𝐴 𝐵  =  1 ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝐴  =  ∅  →  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 7 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 8 | 6 7 | eqtrdi | ⊢ ( 𝐴  =  ∅  →  ( ♯ ‘ 𝐴 )  =  0 ) | 
						
							| 9 | 8 | oveq2d | ⊢ ( 𝐴  =  ∅  →  ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) )  =  ( 𝐵 ↑ 0 ) ) | 
						
							| 10 | 5 9 | eqeq12d | ⊢ ( 𝐴  =  ∅  →  ( ∏ 𝑘  ∈  𝐴 𝐵  =  ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) )  ↔  1  =  ( 𝐵 ↑ 0 ) ) ) | 
						
							| 11 | 2 10 | syl5ibrcom | ⊢ ( 𝐵  ∈  ℂ  →  ( 𝐴  =  ∅  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  =  ∅  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 13 |  | eqidd | ⊢ ( 𝑘  =  ( 𝑓 ‘ 𝑛 )  →  𝐵  =  𝐵 ) | 
						
							| 14 |  | simprl | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  ℂ )  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  →  ( ♯ ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 15 |  | simprr | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  ℂ )  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  →  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) | 
						
							| 16 |  | simpllr | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  ℂ )  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 17 |  | simpllr | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  ℂ )  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  𝐵  ∈  ℂ ) | 
						
							| 18 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  ℂ )  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 20 |  | fvconst2g | ⊢ ( ( 𝐵  ∈  ℂ  ∧  𝑛  ∈  ℕ )  →  ( ( ℕ  ×  { 𝐵 } ) ‘ 𝑛 )  =  𝐵 ) | 
						
							| 21 | 17 19 20 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  ℂ )  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐴 ) ) )  →  ( ( ℕ  ×  { 𝐵 } ) ‘ 𝑛 )  =  𝐵 ) | 
						
							| 22 | 13 14 15 16 21 | fprod | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  ℂ )  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐵 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 23 |  | expnnval | ⊢ ( ( 𝐵  ∈  ℂ  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) )  =  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐵 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 24 | 23 | ad2ant2lr | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  ℂ )  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  →  ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) )  =  ( seq 1 (  ·  ,  ( ℕ  ×  { 𝐵 } ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 25 | 22 24 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  ℂ )  ∧  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) )  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 26 | 25 | expr | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  ℂ )  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ )  →  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 27 | 26 | exlimdv | ⊢ ( ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  ℂ )  ∧  ( ♯ ‘ 𝐴 )  ∈  ℕ )  →  ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 28 | 27 | expimpd | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  ℂ )  →  ( ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 )  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 29 |  | fz1f1o | ⊢ ( 𝐴  ∈  Fin  →  ( 𝐴  =  ∅  ∨  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  ℂ )  →  ( 𝐴  =  ∅  ∨  ( ( ♯ ‘ 𝐴 )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) | 
						
							| 31 | 12 28 30 | mpjaod | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝐵  ∈  ℂ )  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ( 𝐵 ↑ ( ♯ ‘ 𝐴 ) ) ) |