| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prodmo.1 | ⊢ 𝐹  =  ( 𝑘  ∈  ℤ  ↦  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) | 
						
							| 2 |  | prodmo.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | prodrb.3 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 4 |  | fprodcvg.4 | ⊢ ( 𝜑  →  𝐴  ⊆  ( 𝑀 ... 𝑁 ) ) | 
						
							| 5 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑁 )  =  ( ℤ≥ ‘ 𝑁 ) | 
						
							| 6 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ℤ ) | 
						
							| 7 | 3 6 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 8 |  | seqex | ⊢ seq 𝑀 (  ·  ,  𝐹 )  ∈  V | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  𝐹 )  ∈  V ) | 
						
							| 10 |  | eqid | ⊢ ( ℤ≥ ‘ 𝑀 )  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 11 |  | eluzel2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 12 | 3 11 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 13 |  | eluzelz | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑘  ∈  ℤ ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  𝑘  ∈  ℤ ) | 
						
							| 15 |  | iftrue | ⊢ ( 𝑘  ∈  𝐴  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 )  =  𝐵 ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑘  ∈  𝐴 )  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 )  =  𝐵 ) | 
						
							| 17 | 2 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 18 | 16 17 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  ∧  𝑘  ∈  𝐴 )  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 )  ∈  ℂ ) | 
						
							| 19 | 18 | ex | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝑘  ∈  𝐴  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 )  ∈  ℂ ) ) | 
						
							| 20 |  | iffalse | ⊢ ( ¬  𝑘  ∈  𝐴  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 )  =  1 ) | 
						
							| 21 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 22 | 20 21 | eqeltrdi | ⊢ ( ¬  𝑘  ∈  𝐴  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 )  ∈  ℂ ) | 
						
							| 23 | 19 22 | pm2.61d1 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 )  ∈  ℂ ) | 
						
							| 24 | 1 | fvmpt2 | ⊢ ( ( 𝑘  ∈  ℤ  ∧  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 )  ∈  ℂ )  →  ( 𝐹 ‘ 𝑘 )  =  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) | 
						
							| 25 | 14 23 24 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐹 ‘ 𝑘 )  =  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) | 
						
							| 26 | 25 23 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 27 | 10 12 26 | prodf | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  𝐹 ) : ( ℤ≥ ‘ 𝑀 ) ⟶ ℂ ) | 
						
							| 28 | 27 3 | ffvelcdmd | ⊢ ( 𝜑  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 29 |  | mulrid | ⊢ ( 𝑚  ∈  ℂ  →  ( 𝑚  ·  1 )  =  𝑚 ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑚  ∈  ℂ )  →  ( 𝑚  ·  1 )  =  𝑚 ) | 
						
							| 31 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 32 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) ) | 
						
							| 33 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 34 | 26 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) )  →  ( 𝐹 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 35 | 10 33 34 | prodf | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  seq 𝑀 (  ·  ,  𝐹 ) : ( ℤ≥ ‘ 𝑀 ) ⟶ ℂ ) | 
						
							| 36 | 35 31 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑁 )  ∈  ℂ ) | 
						
							| 37 |  | elfzuz | ⊢ ( 𝑚  ∈  ( ( 𝑁  +  1 ) ... 𝑛 )  →  𝑚  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 38 |  | eluzelz | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  →  𝑚  ∈  ℤ ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  →  𝑚  ∈  ℤ ) | 
						
							| 40 | 4 | sseld | ⊢ ( 𝜑  →  ( 𝑚  ∈  𝐴  →  𝑚  ∈  ( 𝑀 ... 𝑁 ) ) ) | 
						
							| 41 |  | fznuz | ⊢ ( 𝑚  ∈  ( 𝑀 ... 𝑁 )  →  ¬  𝑚  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 42 | 40 41 | syl6 | ⊢ ( 𝜑  →  ( 𝑚  ∈  𝐴  →  ¬  𝑚  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) ) | 
						
							| 43 | 42 | con2d | ⊢ ( 𝜑  →  ( 𝑚  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) )  →  ¬  𝑚  ∈  𝐴 ) ) | 
						
							| 44 | 43 | imp | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  →  ¬  𝑚  ∈  𝐴 ) | 
						
							| 45 | 39 44 | eldifd | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  →  𝑚  ∈  ( ℤ  ∖  𝐴 ) ) | 
						
							| 46 |  | fveqeq2 | ⊢ ( 𝑘  =  𝑚  →  ( ( 𝐹 ‘ 𝑘 )  =  1  ↔  ( 𝐹 ‘ 𝑚 )  =  1 ) ) | 
						
							| 47 |  | eldifi | ⊢ ( 𝑘  ∈  ( ℤ  ∖  𝐴 )  →  𝑘  ∈  ℤ ) | 
						
							| 48 |  | eldifn | ⊢ ( 𝑘  ∈  ( ℤ  ∖  𝐴 )  →  ¬  𝑘  ∈  𝐴 ) | 
						
							| 49 | 48 20 | syl | ⊢ ( 𝑘  ∈  ( ℤ  ∖  𝐴 )  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 )  =  1 ) | 
						
							| 50 | 49 21 | eqeltrdi | ⊢ ( 𝑘  ∈  ( ℤ  ∖  𝐴 )  →  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 )  ∈  ℂ ) | 
						
							| 51 | 47 50 24 | syl2anc | ⊢ ( 𝑘  ∈  ( ℤ  ∖  𝐴 )  →  ( 𝐹 ‘ 𝑘 )  =  if ( 𝑘  ∈  𝐴 ,  𝐵 ,  1 ) ) | 
						
							| 52 | 51 49 | eqtrd | ⊢ ( 𝑘  ∈  ( ℤ  ∖  𝐴 )  →  ( 𝐹 ‘ 𝑘 )  =  1 ) | 
						
							| 53 | 46 52 | vtoclga | ⊢ ( 𝑚  ∈  ( ℤ  ∖  𝐴 )  →  ( 𝐹 ‘ 𝑚 )  =  1 ) | 
						
							| 54 | 45 53 | syl | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  →  ( 𝐹 ‘ 𝑚 )  =  1 ) | 
						
							| 55 | 37 54 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( ( 𝑁  +  1 ) ... 𝑛 ) )  →  ( 𝐹 ‘ 𝑚 )  =  1 ) | 
						
							| 56 | 55 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑚  ∈  ( ( 𝑁  +  1 ) ... 𝑛 ) )  →  ( 𝐹 ‘ 𝑚 )  =  1 ) | 
						
							| 57 | 30 31 32 36 56 | seqid2 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑁 )  =  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 ) ) | 
						
							| 58 | 57 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑛 )  =  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑁 ) ) | 
						
							| 59 | 5 7 9 28 58 | climconst | ⊢ ( 𝜑  →  seq 𝑀 (  ·  ,  𝐹 )  ⇝  ( seq 𝑀 (  ·  ,  𝐹 ) ‘ 𝑁 ) ) |