Step |
Hyp |
Ref |
Expression |
1 |
|
prodmo.1 |
⊢ 𝐹 = ( 𝑘 ∈ ℤ ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
2 |
|
prodmo.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
3 |
|
prodrb.3 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
4 |
|
fprodcvg.4 |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) |
5 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) |
6 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
7 |
3 6
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
8 |
|
seqex |
⊢ seq 𝑀 ( · , 𝐹 ) ∈ V |
9 |
8
|
a1i |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ∈ V ) |
10 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
11 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
12 |
3 11
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
13 |
|
eluzelz |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℤ ) |
15 |
|
iftrue |
⊢ ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 𝐵 ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 𝐵 ) |
17 |
2
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
18 |
16 17
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑘 ∈ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
19 |
18
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) ) |
20 |
|
iffalse |
⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 1 ) |
21 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
22 |
20 21
|
eqeltrdi |
⊢ ( ¬ 𝑘 ∈ 𝐴 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
23 |
19 22
|
pm2.61d1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
24 |
1
|
fvmpt2 |
⊢ ( ( 𝑘 ∈ ℤ ∧ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
25 |
14 23 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
26 |
25 23
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
27 |
10 12 26
|
prodf |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) : ( ℤ≥ ‘ 𝑀 ) ⟶ ℂ ) |
28 |
27 3
|
ffvelrnd |
⊢ ( 𝜑 → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
29 |
|
mulid1 |
⊢ ( 𝑚 ∈ ℂ → ( 𝑚 · 1 ) = 𝑚 ) |
30 |
29
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑚 ∈ ℂ ) → ( 𝑚 · 1 ) = 𝑚 ) |
31 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
33 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ℤ ) |
34 |
26
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
35 |
10 33 34
|
prodf |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → seq 𝑀 ( · , 𝐹 ) : ( ℤ≥ ‘ 𝑀 ) ⟶ ℂ ) |
36 |
35 31
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ∈ ℂ ) |
37 |
|
elfzuz |
⊢ ( 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) → 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
38 |
|
eluzelz |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → 𝑚 ∈ ℤ ) |
39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑚 ∈ ℤ ) |
40 |
4
|
sseld |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝐴 → 𝑚 ∈ ( 𝑀 ... 𝑁 ) ) ) |
41 |
|
fznuz |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) → ¬ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
42 |
40 41
|
syl6 |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝐴 → ¬ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
43 |
42
|
con2d |
⊢ ( 𝜑 → ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ¬ 𝑚 ∈ 𝐴 ) ) |
44 |
43
|
imp |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ¬ 𝑚 ∈ 𝐴 ) |
45 |
39 44
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑚 ∈ ( ℤ ∖ 𝐴 ) ) |
46 |
|
fveqeq2 |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐹 ‘ 𝑘 ) = 1 ↔ ( 𝐹 ‘ 𝑚 ) = 1 ) ) |
47 |
|
eldifi |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → 𝑘 ∈ ℤ ) |
48 |
|
eldifn |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → ¬ 𝑘 ∈ 𝐴 ) |
49 |
48 20
|
syl |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = 1 ) |
50 |
49 21
|
eqeltrdi |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ∈ ℂ ) |
51 |
47 50 24
|
syl2anc |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
52 |
51 49
|
eqtrd |
⊢ ( 𝑘 ∈ ( ℤ ∖ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) = 1 ) |
53 |
46 52
|
vtoclga |
⊢ ( 𝑚 ∈ ( ℤ ∖ 𝐴 ) → ( 𝐹 ‘ 𝑚 ) = 1 ) |
54 |
45 53
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝐹 ‘ 𝑚 ) = 1 ) |
55 |
37 54
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( 𝐹 ‘ 𝑚 ) = 1 ) |
56 |
55
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( 𝐹 ‘ 𝑚 ) = 1 ) |
57 |
30 31 32 36 56
|
seqid2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) ) |
58 |
57
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑛 ) = ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) |
59 |
5 7 9 28 58
|
climconst |
⊢ ( 𝜑 → seq 𝑀 ( · , 𝐹 ) ⇝ ( seq 𝑀 ( · , 𝐹 ) ‘ 𝑁 ) ) |