| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fproddivf.kph | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | fproddivf.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 3 |  | fproddivf.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 4 |  | fproddivf.c | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐶  ∈  ℂ ) | 
						
							| 5 |  | fproddivf.ne0 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐶  ≠  0 ) | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑗 ( 𝐵  /  𝐶 ) | 
						
							| 7 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵 | 
						
							| 8 |  | nfcv | ⊢ Ⅎ 𝑘  / | 
						
							| 9 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐶 | 
						
							| 10 | 7 8 9 | nfov | ⊢ Ⅎ 𝑘 ( ⦋ 𝑗  /  𝑘 ⦌ 𝐵  /  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) | 
						
							| 11 |  | csbeq1a | ⊢ ( 𝑘  =  𝑗  →  𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 12 |  | csbeq1a | ⊢ ( 𝑘  =  𝑗  →  𝐶  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) | 
						
							| 13 | 11 12 | oveq12d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐵  /  𝐶 )  =  ( ⦋ 𝑗  /  𝑘 ⦌ 𝐵  /  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 14 | 6 10 13 | cbvprodi | ⊢ ∏ 𝑘  ∈  𝐴 ( 𝐵  /  𝐶 )  =  ∏ 𝑗  ∈  𝐴 ( ⦋ 𝑗  /  𝑘 ⦌ 𝐵  /  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 ( 𝐵  /  𝐶 )  =  ∏ 𝑗  ∈  𝐴 ( ⦋ 𝑗  /  𝑘 ⦌ 𝐵  /  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 16 |  | nfvd | ⊢ ( 𝜑  →  Ⅎ 𝑘 𝑗  ∈  𝐴 ) | 
						
							| 17 | 1 16 | nfan1 | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑗  ∈  𝐴 ) | 
						
							| 18 | 7 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℂ | 
						
							| 19 | 17 18 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 20 |  | eleq1w | ⊢ ( 𝑘  =  𝑗  →  ( 𝑘  ∈  𝐴  ↔  𝑗  ∈  𝐴 ) ) | 
						
							| 21 | 20 | anbi2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝑗  ∈  𝐴 ) ) ) | 
						
							| 22 | 11 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐵  ∈  ℂ  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℂ ) ) | 
						
							| 23 | 21 22 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℂ ) ) ) | 
						
							| 24 | 19 23 3 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 25 | 9 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ℂ | 
						
							| 26 | 17 25 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 27 | 12 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐶  ∈  ℂ  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ℂ ) ) | 
						
							| 28 | 21 27 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐶  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ℂ ) ) ) | 
						
							| 29 | 26 28 4 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 30 |  | nfcv | ⊢ Ⅎ 𝑘 0 | 
						
							| 31 | 9 30 | nfne | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ≠  0 | 
						
							| 32 | 17 31 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ≠  0 ) | 
						
							| 33 | 12 | neeq1d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐶  ≠  0  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ≠  0 ) ) | 
						
							| 34 | 21 33 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐶  ≠  0 )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ≠  0 ) ) ) | 
						
							| 35 | 32 34 5 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ≠  0 ) | 
						
							| 36 | 2 24 29 35 | fproddiv | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  𝐴 ( ⦋ 𝑗  /  𝑘 ⦌ 𝐵  /  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 )  =  ( ∏ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  /  ∏ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 37 |  | nfcv | ⊢ Ⅎ 𝑗 𝐵 | 
						
							| 38 | 37 7 11 | cbvprodi | ⊢ ∏ 𝑘  ∈  𝐴 𝐵  =  ∏ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵 | 
						
							| 39 | 38 | eqcomi | ⊢ ∏ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  ∏ 𝑘  ∈  𝐴 𝐵 | 
						
							| 40 | 39 | a1i | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  ∏ 𝑘  ∈  𝐴 𝐵 ) | 
						
							| 41 |  | nfcv | ⊢ Ⅎ 𝑗 𝐶 | 
						
							| 42 | 12 | equcoms | ⊢ ( 𝑗  =  𝑘  →  𝐶  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) | 
						
							| 43 | 42 | eqcomd | ⊢ ( 𝑗  =  𝑘  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  =  𝐶 ) | 
						
							| 44 | 9 41 43 | cbvprodi | ⊢ ∏ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐶  =  ∏ 𝑘  ∈  𝐴 𝐶 | 
						
							| 45 | 44 | a1i | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐶  =  ∏ 𝑘  ∈  𝐴 𝐶 ) | 
						
							| 46 | 40 45 | oveq12d | ⊢ ( 𝜑  →  ( ∏ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  /  ∏ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐶 )  =  ( ∏ 𝑘  ∈  𝐴 𝐵  /  ∏ 𝑘  ∈  𝐴 𝐶 ) ) | 
						
							| 47 | 15 36 46 | 3eqtrd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 ( 𝐵  /  𝐶 )  =  ( ∏ 𝑘  ∈  𝐴 𝐵  /  ∏ 𝑘  ∈  𝐴 𝐶 ) ) |