Metamath Proof Explorer


Theorem fproddivf

Description: The quotient of two finite products. A version of fproddiv using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fproddivf.kph 𝑘 𝜑
fproddivf.a ( 𝜑𝐴 ∈ Fin )
fproddivf.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
fproddivf.c ( ( 𝜑𝑘𝐴 ) → 𝐶 ∈ ℂ )
fproddivf.ne0 ( ( 𝜑𝑘𝐴 ) → 𝐶 ≠ 0 )
Assertion fproddivf ( 𝜑 → ∏ 𝑘𝐴 ( 𝐵 / 𝐶 ) = ( ∏ 𝑘𝐴 𝐵 / ∏ 𝑘𝐴 𝐶 ) )

Proof

Step Hyp Ref Expression
1 fproddivf.kph 𝑘 𝜑
2 fproddivf.a ( 𝜑𝐴 ∈ Fin )
3 fproddivf.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ )
4 fproddivf.c ( ( 𝜑𝑘𝐴 ) → 𝐶 ∈ ℂ )
5 fproddivf.ne0 ( ( 𝜑𝑘𝐴 ) → 𝐶 ≠ 0 )
6 nfcv 𝑗 ( 𝐵 / 𝐶 )
7 nfcsb1v 𝑘 𝑗 / 𝑘 𝐵
8 nfcv 𝑘 /
9 nfcsb1v 𝑘 𝑗 / 𝑘 𝐶
10 7 8 9 nfov 𝑘 ( 𝑗 / 𝑘 𝐵 / 𝑗 / 𝑘 𝐶 )
11 csbeq1a ( 𝑘 = 𝑗𝐵 = 𝑗 / 𝑘 𝐵 )
12 csbeq1a ( 𝑘 = 𝑗𝐶 = 𝑗 / 𝑘 𝐶 )
13 11 12 oveq12d ( 𝑘 = 𝑗 → ( 𝐵 / 𝐶 ) = ( 𝑗 / 𝑘 𝐵 / 𝑗 / 𝑘 𝐶 ) )
14 6 10 13 cbvprodi 𝑘𝐴 ( 𝐵 / 𝐶 ) = ∏ 𝑗𝐴 ( 𝑗 / 𝑘 𝐵 / 𝑗 / 𝑘 𝐶 )
15 14 a1i ( 𝜑 → ∏ 𝑘𝐴 ( 𝐵 / 𝐶 ) = ∏ 𝑗𝐴 ( 𝑗 / 𝑘 𝐵 / 𝑗 / 𝑘 𝐶 ) )
16 nfvd ( 𝜑 → Ⅎ 𝑘 𝑗𝐴 )
17 1 16 nfan1 𝑘 ( 𝜑𝑗𝐴 )
18 7 nfel1 𝑘 𝑗 / 𝑘 𝐵 ∈ ℂ
19 17 18 nfim 𝑘 ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵 ∈ ℂ )
20 eleq1w ( 𝑘 = 𝑗 → ( 𝑘𝐴𝑗𝐴 ) )
21 20 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘𝐴 ) ↔ ( 𝜑𝑗𝐴 ) ) )
22 11 eleq1d ( 𝑘 = 𝑗 → ( 𝐵 ∈ ℂ ↔ 𝑗 / 𝑘 𝐵 ∈ ℂ ) )
23 21 22 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℂ ) ↔ ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵 ∈ ℂ ) ) )
24 19 23 3 chvarfv ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐵 ∈ ℂ )
25 9 nfel1 𝑘 𝑗 / 𝑘 𝐶 ∈ ℂ
26 17 25 nfim 𝑘 ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐶 ∈ ℂ )
27 12 eleq1d ( 𝑘 = 𝑗 → ( 𝐶 ∈ ℂ ↔ 𝑗 / 𝑘 𝐶 ∈ ℂ ) )
28 21 27 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝐴 ) → 𝐶 ∈ ℂ ) ↔ ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐶 ∈ ℂ ) ) )
29 26 28 4 chvarfv ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐶 ∈ ℂ )
30 nfcv 𝑘 0
31 9 30 nfne 𝑘 𝑗 / 𝑘 𝐶 ≠ 0
32 17 31 nfim 𝑘 ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐶 ≠ 0 )
33 12 neeq1d ( 𝑘 = 𝑗 → ( 𝐶 ≠ 0 ↔ 𝑗 / 𝑘 𝐶 ≠ 0 ) )
34 21 33 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘𝐴 ) → 𝐶 ≠ 0 ) ↔ ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐶 ≠ 0 ) ) )
35 32 34 5 chvarfv ( ( 𝜑𝑗𝐴 ) → 𝑗 / 𝑘 𝐶 ≠ 0 )
36 2 24 29 35 fproddiv ( 𝜑 → ∏ 𝑗𝐴 ( 𝑗 / 𝑘 𝐵 / 𝑗 / 𝑘 𝐶 ) = ( ∏ 𝑗𝐴 𝑗 / 𝑘 𝐵 / ∏ 𝑗𝐴 𝑗 / 𝑘 𝐶 ) )
37 nfcv 𝑗 𝐵
38 37 7 11 cbvprodi 𝑘𝐴 𝐵 = ∏ 𝑗𝐴 𝑗 / 𝑘 𝐵
39 38 eqcomi 𝑗𝐴 𝑗 / 𝑘 𝐵 = ∏ 𝑘𝐴 𝐵
40 39 a1i ( 𝜑 → ∏ 𝑗𝐴 𝑗 / 𝑘 𝐵 = ∏ 𝑘𝐴 𝐵 )
41 nfcv 𝑗 𝐶
42 12 equcoms ( 𝑗 = 𝑘𝐶 = 𝑗 / 𝑘 𝐶 )
43 42 eqcomd ( 𝑗 = 𝑘 𝑗 / 𝑘 𝐶 = 𝐶 )
44 9 41 43 cbvprodi 𝑗𝐴 𝑗 / 𝑘 𝐶 = ∏ 𝑘𝐴 𝐶
45 44 a1i ( 𝜑 → ∏ 𝑗𝐴 𝑗 / 𝑘 𝐶 = ∏ 𝑘𝐴 𝐶 )
46 40 45 oveq12d ( 𝜑 → ( ∏ 𝑗𝐴 𝑗 / 𝑘 𝐵 / ∏ 𝑗𝐴 𝑗 / 𝑘 𝐶 ) = ( ∏ 𝑘𝐴 𝐵 / ∏ 𝑘𝐴 𝐶 ) )
47 15 36 46 3eqtrd ( 𝜑 → ∏ 𝑘𝐴 ( 𝐵 / 𝐶 ) = ( ∏ 𝑘𝐴 𝐵 / ∏ 𝑘𝐴 𝐶 ) )