Step |
Hyp |
Ref |
Expression |
1 |
|
fproddvdsd.f |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fproddvdsd.s |
⊢ ( 𝜑 → 𝐴 ⊆ ℤ ) |
3 |
|
f1oi |
⊢ ( I ↾ ℤ ) : ℤ –1-1-onto→ ℤ |
4 |
|
f1of |
⊢ ( ( I ↾ ℤ ) : ℤ –1-1-onto→ ℤ → ( I ↾ ℤ ) : ℤ ⟶ ℤ ) |
5 |
3 4
|
mp1i |
⊢ ( 𝜑 → ( I ↾ ℤ ) : ℤ ⟶ ℤ ) |
6 |
1 2 5
|
fprodfvdvdsd |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( ( I ↾ ℤ ) ‘ 𝑥 ) ∥ ∏ 𝑘 ∈ 𝐴 ( ( I ↾ ℤ ) ‘ 𝑘 ) ) |
7 |
2
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℤ ) |
8 |
|
fvresi |
⊢ ( 𝑥 ∈ ℤ → ( ( I ↾ ℤ ) ‘ 𝑥 ) = 𝑥 ) |
9 |
7 8
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( I ↾ ℤ ) ‘ 𝑥 ) = 𝑥 ) |
10 |
9
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 = ( ( I ↾ ℤ ) ‘ 𝑥 ) ) |
11 |
2
|
sseld |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝑘 ∈ ℤ ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑘 ∈ 𝐴 → 𝑘 ∈ ℤ ) ) |
13 |
12
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ ℤ ) |
14 |
|
fvresi |
⊢ ( 𝑘 ∈ ℤ → ( ( I ↾ ℤ ) ‘ 𝑘 ) = 𝑘 ) |
15 |
13 14
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → ( ( I ↾ ℤ ) ‘ 𝑘 ) = 𝑘 ) |
16 |
15
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑘 = ( ( I ↾ ℤ ) ‘ 𝑘 ) ) |
17 |
16
|
prodeq2dv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∏ 𝑘 ∈ 𝐴 𝑘 = ∏ 𝑘 ∈ 𝐴 ( ( I ↾ ℤ ) ‘ 𝑘 ) ) |
18 |
10 17
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∥ ∏ 𝑘 ∈ 𝐴 𝑘 ↔ ( ( I ↾ ℤ ) ‘ 𝑥 ) ∥ ∏ 𝑘 ∈ 𝐴 ( ( I ↾ ℤ ) ‘ 𝑘 ) ) ) |
19 |
18
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 𝑥 ∥ ∏ 𝑘 ∈ 𝐴 𝑘 ↔ ∀ 𝑥 ∈ 𝐴 ( ( I ↾ ℤ ) ‘ 𝑥 ) ∥ ∏ 𝑘 ∈ 𝐴 ( ( I ↾ ℤ ) ‘ 𝑘 ) ) ) |
20 |
6 19
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝑥 ∥ ∏ 𝑘 ∈ 𝐴 𝑘 ) |