Step |
Hyp |
Ref |
Expression |
1 |
|
fprodefsum.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
fprodefsum.2 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
3 |
|
fprodefsum.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
4 |
2 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
5 |
|
oveq2 |
⊢ ( 𝑎 = 𝑀 → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... 𝑀 ) ) |
6 |
5
|
prodeq1d |
⊢ ( 𝑎 = 𝑀 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
7 |
5
|
sumeq1d |
⊢ ( 𝑎 = 𝑀 → Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝑎 = 𝑀 → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
9 |
6 8
|
eqeq12d |
⊢ ( 𝑎 = 𝑀 → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ↔ ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑎 = 𝑀 → ( ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑎 = 𝑛 → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... 𝑛 ) ) |
12 |
11
|
prodeq1d |
⊢ ( 𝑎 = 𝑛 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
13 |
11
|
sumeq1d |
⊢ ( 𝑎 = 𝑛 → Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝑎 = 𝑛 → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
15 |
12 14
|
eqeq12d |
⊢ ( 𝑎 = 𝑛 → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ↔ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑎 = 𝑛 → ( ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
17 |
|
oveq2 |
⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... ( 𝑛 + 1 ) ) ) |
18 |
17
|
prodeq1d |
⊢ ( 𝑎 = ( 𝑛 + 1 ) → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
19 |
17
|
sumeq1d |
⊢ ( 𝑎 = ( 𝑛 + 1 ) → Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
21 |
18 20
|
eqeq12d |
⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ↔ ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
22 |
21
|
imbi2d |
⊢ ( 𝑎 = ( 𝑛 + 1 ) → ( ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
23 |
|
oveq2 |
⊢ ( 𝑎 = 𝑁 → ( 𝑀 ... 𝑎 ) = ( 𝑀 ... 𝑁 ) ) |
24 |
23
|
prodeq1d |
⊢ ( 𝑎 = 𝑁 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
25 |
23
|
sumeq1d |
⊢ ( 𝑎 = 𝑁 → Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝑎 = 𝑁 → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
27 |
24 26
|
eqeq12d |
⊢ ( 𝑎 = 𝑁 → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ↔ ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
28 |
27
|
imbi2d |
⊢ ( 𝑎 = 𝑁 → ( ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑎 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ↔ ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
29 |
|
fzsn |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
31 |
30
|
prodeq1d |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑚 ∈ { 𝑀 } ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
32 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
33 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
34 |
33 1
|
eleqtrrdi |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ 𝑍 ) |
35 |
|
efcl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ 𝐴 ) ∈ ℂ ) |
36 |
3 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( exp ‘ 𝐴 ) ∈ ℂ ) |
37 |
36
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) : 𝑍 ⟶ ℂ ) |
38 |
37
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) ∈ ℂ ) |
39 |
34 38
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) ∈ ℂ ) |
40 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) ) |
41 |
40
|
prodsn |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) ∈ ℂ ) → ∏ 𝑚 ∈ { 𝑀 } ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) ) |
42 |
32 39 41
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑚 ∈ { 𝑀 } ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) ) |
43 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ 𝑍 ) |
44 |
|
fvex |
⊢ ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ∈ V |
45 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑀 |
46 |
|
nfcv |
⊢ Ⅎ 𝑘 exp |
47 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑀 / 𝑘 ⦌ 𝐴 |
48 |
46 47
|
nffv |
⊢ Ⅎ 𝑘 ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
49 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑀 → 𝐴 = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
50 |
49
|
fveq2d |
⊢ ( 𝑘 = 𝑀 → ( exp ‘ 𝐴 ) = ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
51 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) = ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) |
52 |
45 48 50 51
|
fvmptf |
⊢ ( ( 𝑀 ∈ 𝑍 ∧ ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ∈ V ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) = ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
53 |
43 44 52
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑀 ) = ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
54 |
31 42 53
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
55 |
30
|
sumeq1d |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ { 𝑀 } ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
56 |
3
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) : 𝑍 ⟶ ℂ ) |
57 |
56
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) ∈ ℂ ) |
58 |
34 57
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) ∈ ℂ ) |
59 |
|
fveq2 |
⊢ ( 𝑚 = 𝑀 → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) ) |
60 |
59
|
sumsn |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) ∈ ℂ ) → Σ 𝑚 ∈ { 𝑀 } ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) ) |
61 |
32 58 60
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → Σ 𝑚 ∈ { 𝑀 } ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) ) |
62 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ) |
63 |
47
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ |
64 |
49
|
eleq1d |
⊢ ( 𝑘 = 𝑀 → ( 𝐴 ∈ ℂ ↔ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
65 |
63 64
|
rspc |
⊢ ( 𝑀 ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
66 |
65
|
impcom |
⊢ ( ( ∀ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ ∧ 𝑀 ∈ 𝑍 ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
67 |
62 34 66
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
68 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) = ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) |
69 |
68
|
fvmpts |
⊢ ( ( 𝑀 ∈ 𝑍 ∧ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ∈ ℂ ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
70 |
43 67 69
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑀 ) = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
71 |
55 61 70
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) |
72 |
71
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ ⦋ 𝑀 / 𝑘 ⦌ 𝐴 ) ) |
73 |
54 72
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
74 |
73
|
expcom |
⊢ ( 𝑀 ∈ ℤ → ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑀 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
75 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
76 |
1
|
peano2uzs |
⊢ ( 𝑛 ∈ 𝑍 → ( 𝑛 + 1 ) ∈ 𝑍 ) |
77 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( 𝑛 + 1 ) ∈ 𝑍 ) |
78 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 |
79 |
78
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ |
80 |
|
csbeq1a |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → 𝐴 = ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) |
81 |
80
|
eleq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐴 ∈ ℂ ↔ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
82 |
79 81
|
rspc |
⊢ ( ( 𝑛 + 1 ) ∈ 𝑍 → ( ∀ 𝑘 ∈ 𝑍 𝐴 ∈ ℂ → ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) ) |
83 |
62 82
|
mpan9 |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) |
84 |
|
efcl |
⊢ ( ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ → ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ∈ ℂ ) |
85 |
83 84
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ∈ ℂ ) |
86 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝑛 + 1 ) |
87 |
46 78
|
nffv |
⊢ Ⅎ 𝑘 ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) |
88 |
80
|
fveq2d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( exp ‘ 𝐴 ) = ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
89 |
86 87 88 51
|
fvmptf |
⊢ ( ( ( 𝑛 + 1 ) ∈ 𝑍 ∧ ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ∈ ℂ ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
90 |
77 85 89
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
91 |
68
|
fvmpts |
⊢ ( ( ( 𝑛 + 1 ) ∈ 𝑍 ∧ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ∈ ℂ ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) = ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) |
92 |
77 83 91
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) = ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) |
93 |
92
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) = ( exp ‘ ⦋ ( 𝑛 + 1 ) / 𝑘 ⦌ 𝐴 ) ) |
94 |
90 93
|
eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) |
95 |
76 94
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) |
96 |
95
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) = ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) |
97 |
75 96
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) · ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) ) = ( ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) · ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
98 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ 𝑍 ) |
99 |
98 1
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
100 |
|
elfzuz |
⊢ ( 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
101 |
100 1
|
eleqtrrdi |
⊢ ( 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) → 𝑚 ∈ 𝑍 ) |
102 |
37
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ∈ ℂ ) |
103 |
101 102
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ∈ ℂ ) |
104 |
103
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ∈ ℂ ) |
105 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) ) |
106 |
99 104 105
|
fprodp1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) · ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) ) ) |
107 |
106
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) · ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ ( 𝑛 + 1 ) ) ) ) |
108 |
56
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
109 |
101 108
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
110 |
109
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
111 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) |
112 |
99 110 111
|
fsump1 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) + ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) |
113 |
112
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ ( Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) + ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
114 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑀 ... 𝑛 ) ∈ Fin ) |
115 |
|
elfzuz |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) → 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
116 |
115 1
|
eleqtrrdi |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑛 ) → 𝑚 ∈ 𝑍 ) |
117 |
116 108
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
118 |
117
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
119 |
114 118
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ) |
120 |
56
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
121 |
76 120
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) |
122 |
|
efadd |
⊢ ( ( Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ∈ ℂ ∧ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ∈ ℂ ) → ( exp ‘ ( Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) + ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) = ( ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) · ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
123 |
119 121 122
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( exp ‘ ( Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) + ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) = ( ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) · ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
124 |
113 123
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) · ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
125 |
124
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) · ( exp ‘ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ ( 𝑛 + 1 ) ) ) ) ) |
126 |
97 107 125
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ∧ ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
127 |
126
|
3exp |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
128 |
127
|
com12 |
⊢ ( 𝑛 ∈ 𝑍 → ( 𝜑 → ( ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
129 |
128
|
a2d |
⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
130 |
1
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑀 ) = 𝑍 |
131 |
129 130
|
eleq2s |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑛 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) → ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... ( 𝑛 + 1 ) ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) ) |
132 |
10 16 22 28 74 131
|
uzind4 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) ) |
133 |
4 132
|
mpcom |
⊢ ( 𝜑 → ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) ) |
134 |
|
fvres |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
135 |
|
fzssuz |
⊢ ( 𝑀 ... 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) |
136 |
135 1
|
sseqtrri |
⊢ ( 𝑀 ... 𝑁 ) ⊆ 𝑍 |
137 |
|
resmpt |
⊢ ( ( 𝑀 ... 𝑁 ) ⊆ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ↾ ( 𝑀 ... 𝑁 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( exp ‘ 𝐴 ) ) ) |
138 |
136 137
|
ax-mp |
⊢ ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ↾ ( 𝑀 ... 𝑁 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( exp ‘ 𝐴 ) ) |
139 |
138
|
fveq1i |
⊢ ( ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) |
140 |
134 139
|
eqtr3di |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) ) |
141 |
140
|
prodeq2i |
⊢ ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) |
142 |
|
prodfc |
⊢ ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( exp ‘ 𝐴 ) |
143 |
141 142
|
eqtri |
⊢ ∏ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ ( exp ‘ 𝐴 ) ) ‘ 𝑚 ) = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( exp ‘ 𝐴 ) |
144 |
|
fvres |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) → ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) |
145 |
|
resmpt |
⊢ ( ( 𝑀 ... 𝑁 ) ⊆ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑁 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ) |
146 |
136 145
|
ax-mp |
⊢ ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑁 ) ) = ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) |
147 |
146
|
fveq1i |
⊢ ( ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ↾ ( 𝑀 ... 𝑁 ) ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ‘ 𝑚 ) |
148 |
144 147
|
eqtr3di |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) → ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ‘ 𝑚 ) ) |
149 |
148
|
sumeq2i |
⊢ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ‘ 𝑚 ) |
150 |
|
sumfc |
⊢ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 |
151 |
149 150
|
eqtri |
⊢ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) = Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 |
152 |
151
|
fveq2i |
⊢ ( exp ‘ Σ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ( ( 𝑘 ∈ 𝑍 ↦ 𝐴 ) ‘ 𝑚 ) ) = ( exp ‘ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) |
153 |
133 143 152
|
3eqtr3g |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ( exp ‘ 𝐴 ) = ( exp ‘ Σ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) ) |