Step |
Hyp |
Ref |
Expression |
1 |
|
fprodeq0.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
fprodeq0.2 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
3 |
|
fprodeq0.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℂ ) |
4 |
|
fprodeq0.4 |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝑁 ) → 𝐴 = 0 ) |
5 |
|
eluzel2 |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ∈ ℤ ) |
6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ℤ ) |
7 |
6
|
zred |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ℝ ) |
8 |
7
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 < ( 𝑁 + 1 ) ) |
9 |
|
fzdisj |
⊢ ( 𝑁 < ( 𝑁 + 1 ) → ( ( 𝑀 ... 𝑁 ) ∩ ( ( 𝑁 + 1 ) ... 𝐾 ) ) = ∅ ) |
10 |
8 9
|
syl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑀 ... 𝑁 ) ∩ ( ( 𝑁 + 1 ) ... 𝐾 ) ) = ∅ ) |
11 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
12 |
11 1
|
eleq2s |
⊢ ( 𝑁 ∈ 𝑍 → 𝑀 ∈ ℤ ) |
13 |
2 12
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ℤ ) |
15 |
|
eluzelz |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝐾 ∈ ℤ ) |
16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝐾 ∈ ℤ ) |
17 |
14 16 6
|
3jca |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
18 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑁 ) |
19 |
18 1
|
eleq2s |
⊢ ( 𝑁 ∈ 𝑍 → 𝑀 ≤ 𝑁 ) |
20 |
2 19
|
syl |
⊢ ( 𝜑 → 𝑀 ≤ 𝑁 ) |
21 |
|
eluzle |
⊢ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ 𝐾 ) |
22 |
20 21
|
anim12i |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾 ) ) |
23 |
|
elfz2 |
⊢ ( 𝑁 ∈ ( 𝑀 ... 𝐾 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝐾 ) ) ) |
24 |
17 22 23
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ( 𝑀 ... 𝐾 ) ) |
25 |
|
fzsplit |
⊢ ( 𝑁 ∈ ( 𝑀 ... 𝐾 ) → ( 𝑀 ... 𝐾 ) = ( ( 𝑀 ... 𝑁 ) ∪ ( ( 𝑁 + 1 ) ... 𝐾 ) ) ) |
26 |
24 25
|
syl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑀 ... 𝐾 ) = ( ( 𝑀 ... 𝑁 ) ∪ ( ( 𝑁 + 1 ) ... 𝐾 ) ) ) |
27 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑀 ... 𝐾 ) ∈ Fin ) |
28 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝐾 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
29 |
28 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝐾 ) → 𝑘 ∈ 𝑍 ) |
30 |
29 3
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝐾 ) ) → 𝐴 ∈ ℂ ) |
31 |
30
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( 𝑀 ... 𝐾 ) ) → 𝐴 ∈ ℂ ) |
32 |
10 26 27 31
|
fprodsplit |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝐾 ) 𝐴 = ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 · ∏ 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) 𝐴 ) ) |
33 |
2 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
34 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
35 |
34 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... 𝑁 ) → 𝑘 ∈ 𝑍 ) |
36 |
35 3
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... 𝑁 ) ) → 𝐴 ∈ ℂ ) |
37 |
33 36
|
fprodm1s |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = ( ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 · ⦋ 𝑁 / 𝑘 ⦌ 𝐴 ) ) |
38 |
2 4
|
csbied |
⊢ ( 𝜑 → ⦋ 𝑁 / 𝑘 ⦌ 𝐴 = 0 ) |
39 |
38
|
oveq2d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 · ⦋ 𝑁 / 𝑘 ⦌ 𝐴 ) = ( ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 · 0 ) ) |
40 |
|
fzfid |
⊢ ( 𝜑 → ( 𝑀 ... ( 𝑁 − 1 ) ) ∈ Fin ) |
41 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
42 |
41 1
|
eleqtrrdi |
⊢ ( 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) → 𝑘 ∈ 𝑍 ) |
43 |
42 3
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) ) → 𝐴 ∈ ℂ ) |
44 |
40 43
|
fprodcl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 ∈ ℂ ) |
45 |
44
|
mul01d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 − 1 ) ) 𝐴 · 0 ) = 0 ) |
46 |
37 39 45
|
3eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = 0 ) |
47 |
46
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 = 0 ) |
48 |
47
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 · ∏ 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) 𝐴 ) = ( 0 · ∏ 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) 𝐴 ) ) |
49 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑁 + 1 ) ... 𝐾 ) ∈ Fin ) |
50 |
1
|
peano2uzs |
⊢ ( 𝑁 ∈ 𝑍 → ( 𝑁 + 1 ) ∈ 𝑍 ) |
51 |
2 50
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ 𝑍 ) |
52 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) → 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
53 |
1
|
uztrn2 |
⊢ ( ( ( 𝑁 + 1 ) ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑘 ∈ 𝑍 ) |
54 |
51 52 53
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) ) → 𝑘 ∈ 𝑍 ) |
55 |
54
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) ) ) → 𝑘 ∈ 𝑍 ) |
56 |
55 3
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) ) ) → 𝐴 ∈ ℂ ) |
57 |
56
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) ) → 𝐴 ∈ ℂ ) |
58 |
49 57
|
fprodcl |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ∏ 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) 𝐴 ∈ ℂ ) |
59 |
58
|
mul02d |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 0 · ∏ 𝑘 ∈ ( ( 𝑁 + 1 ) ... 𝐾 ) 𝐴 ) = 0 ) |
60 |
32 48 59
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝐾 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ∏ 𝑘 ∈ ( 𝑀 ... 𝐾 ) 𝐴 = 0 ) |