| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodeq0.1 | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 2 |  | fprodeq0.2 | ⊢ ( 𝜑  →  𝑁  ∈  𝑍 ) | 
						
							| 3 |  | fprodeq0.3 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  𝐴  ∈  ℂ ) | 
						
							| 4 |  | fprodeq0.4 | ⊢ ( ( 𝜑  ∧  𝑘  =  𝑁 )  →  𝐴  =  0 ) | 
						
							| 5 |  | eluzel2 | ⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 𝑁 )  →  𝑁  ∈  ℤ ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 7 | 6 | zred | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑁  ∈  ℝ ) | 
						
							| 8 | 7 | ltp1d | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑁  <  ( 𝑁  +  1 ) ) | 
						
							| 9 |  | fzdisj | ⊢ ( 𝑁  <  ( 𝑁  +  1 )  →  ( ( 𝑀 ... 𝑁 )  ∩  ( ( 𝑁  +  1 ) ... 𝐾 ) )  =  ∅ ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑀 ... 𝑁 )  ∩  ( ( 𝑁  +  1 ) ... 𝐾 ) )  =  ∅ ) | 
						
							| 11 |  | eluzel2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 12 | 11 1 | eleq2s | ⊢ ( 𝑁  ∈  𝑍  →  𝑀  ∈  ℤ ) | 
						
							| 13 | 2 12 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 15 |  | eluzelz | ⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 𝑁 )  →  𝐾  ∈  ℤ ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝐾  ∈  ℤ ) | 
						
							| 17 | 14 16 6 | 3jca | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑀  ∈  ℤ  ∧  𝐾  ∈  ℤ  ∧  𝑁  ∈  ℤ ) ) | 
						
							| 18 |  | eluzle | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ≤  𝑁 ) | 
						
							| 19 | 18 1 | eleq2s | ⊢ ( 𝑁  ∈  𝑍  →  𝑀  ≤  𝑁 ) | 
						
							| 20 | 2 19 | syl | ⊢ ( 𝜑  →  𝑀  ≤  𝑁 ) | 
						
							| 21 |  | eluzle | ⊢ ( 𝐾  ∈  ( ℤ≥ ‘ 𝑁 )  →  𝑁  ≤  𝐾 ) | 
						
							| 22 | 20 21 | anim12i | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑀  ≤  𝑁  ∧  𝑁  ≤  𝐾 ) ) | 
						
							| 23 |  | elfz2 | ⊢ ( 𝑁  ∈  ( 𝑀 ... 𝐾 )  ↔  ( ( 𝑀  ∈  ℤ  ∧  𝐾  ∈  ℤ  ∧  𝑁  ∈  ℤ )  ∧  ( 𝑀  ≤  𝑁  ∧  𝑁  ≤  𝐾 ) ) ) | 
						
							| 24 | 17 22 23 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  𝑁  ∈  ( 𝑀 ... 𝐾 ) ) | 
						
							| 25 |  | fzsplit | ⊢ ( 𝑁  ∈  ( 𝑀 ... 𝐾 )  →  ( 𝑀 ... 𝐾 )  =  ( ( 𝑀 ... 𝑁 )  ∪  ( ( 𝑁  +  1 ) ... 𝐾 ) ) ) | 
						
							| 26 | 24 25 | syl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑀 ... 𝐾 )  =  ( ( 𝑀 ... 𝑁 )  ∪  ( ( 𝑁  +  1 ) ... 𝐾 ) ) ) | 
						
							| 27 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 𝑀 ... 𝐾 )  ∈  Fin ) | 
						
							| 28 |  | elfzuz | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝐾 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 29 | 28 1 | eleqtrrdi | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝐾 )  →  𝑘  ∈  𝑍 ) | 
						
							| 30 | 29 3 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝐾 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 31 | 30 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑘  ∈  ( 𝑀 ... 𝐾 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 32 | 10 26 27 31 | fprodsplit | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝐾 ) 𝐴  =  ( ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  ·  ∏ 𝑘  ∈  ( ( 𝑁  +  1 ) ... 𝐾 ) 𝐴 ) ) | 
						
							| 33 | 2 1 | eleqtrdi | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 34 |  | elfzuz | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑁 )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 35 | 34 1 | eleqtrrdi | ⊢ ( 𝑘  ∈  ( 𝑀 ... 𝑁 )  →  𝑘  ∈  𝑍 ) | 
						
							| 36 | 35 3 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... 𝑁 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 37 | 33 36 | fprodm1s | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  =  ( ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) 𝐴  ·  ⦋ 𝑁  /  𝑘 ⦌ 𝐴 ) ) | 
						
							| 38 | 2 4 | csbied | ⊢ ( 𝜑  →  ⦋ 𝑁  /  𝑘 ⦌ 𝐴  =  0 ) | 
						
							| 39 | 38 | oveq2d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) 𝐴  ·  ⦋ 𝑁  /  𝑘 ⦌ 𝐴 )  =  ( ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) 𝐴  ·  0 ) ) | 
						
							| 40 |  | fzfid | ⊢ ( 𝜑  →  ( 𝑀 ... ( 𝑁  −  1 ) )  ∈  Fin ) | 
						
							| 41 |  | elfzuz | ⊢ ( 𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) )  →  𝑘  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 42 | 41 1 | eleqtrrdi | ⊢ ( 𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 43 | 42 3 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 44 | 40 43 | fprodcl | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) 𝐴  ∈  ℂ ) | 
						
							| 45 | 44 | mul01d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑁  −  1 ) ) 𝐴  ·  0 )  =  0 ) | 
						
							| 46 | 37 39 45 | 3eqtrd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  =  0 ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  =  0 ) | 
						
							| 48 | 47 | oveq1d | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  ·  ∏ 𝑘  ∈  ( ( 𝑁  +  1 ) ... 𝐾 ) 𝐴 )  =  ( 0  ·  ∏ 𝑘  ∈  ( ( 𝑁  +  1 ) ... 𝐾 ) 𝐴 ) ) | 
						
							| 49 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( ( 𝑁  +  1 ) ... 𝐾 )  ∈  Fin ) | 
						
							| 50 | 1 | peano2uzs | ⊢ ( 𝑁  ∈  𝑍  →  ( 𝑁  +  1 )  ∈  𝑍 ) | 
						
							| 51 | 2 50 | syl | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  𝑍 ) | 
						
							| 52 |  | elfzuz | ⊢ ( 𝑘  ∈  ( ( 𝑁  +  1 ) ... 𝐾 )  →  𝑘  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) ) | 
						
							| 53 | 1 | uztrn2 | ⊢ ( ( ( 𝑁  +  1 )  ∈  𝑍  ∧  𝑘  ∈  ( ℤ≥ ‘ ( 𝑁  +  1 ) ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 54 | 51 52 53 | syl2an | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( ( 𝑁  +  1 ) ... 𝐾 ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 55 | 54 | adantrl | ⊢ ( ( 𝜑  ∧  ( 𝐾  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  ∈  ( ( 𝑁  +  1 ) ... 𝐾 ) ) )  →  𝑘  ∈  𝑍 ) | 
						
							| 56 | 55 3 | syldan | ⊢ ( ( 𝜑  ∧  ( 𝐾  ∈  ( ℤ≥ ‘ 𝑁 )  ∧  𝑘  ∈  ( ( 𝑁  +  1 ) ... 𝐾 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 57 | 56 | anassrs | ⊢ ( ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  ∧  𝑘  ∈  ( ( 𝑁  +  1 ) ... 𝐾 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 58 | 49 57 | fprodcl | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ∏ 𝑘  ∈  ( ( 𝑁  +  1 ) ... 𝐾 ) 𝐴  ∈  ℂ ) | 
						
							| 59 | 58 | mul02d | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ( 0  ·  ∏ 𝑘  ∈  ( ( 𝑁  +  1 ) ... 𝐾 ) 𝐴 )  =  0 ) | 
						
							| 60 | 32 48 59 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝐾  ∈  ( ℤ≥ ‘ 𝑁 ) )  →  ∏ 𝑘  ∈  ( 𝑀 ... 𝐾 ) 𝐴  =  0 ) |