Step |
Hyp |
Ref |
Expression |
1 |
|
fprodeq02.1 |
⊢ ( 𝑘 = 𝐾 → 𝐵 = 𝐶 ) |
2 |
|
fprodeq02.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
fprodeq02.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
4 |
|
fprodeq02.k |
⊢ ( 𝜑 → 𝐾 ∈ 𝐴 ) |
5 |
|
fprodeq02.c |
⊢ ( 𝜑 → 𝐶 = 0 ) |
6 |
|
disjdif |
⊢ ( { 𝐾 } ∩ ( 𝐴 ∖ { 𝐾 } ) ) = ∅ |
7 |
6
|
a1i |
⊢ ( 𝜑 → ( { 𝐾 } ∩ ( 𝐴 ∖ { 𝐾 } ) ) = ∅ ) |
8 |
4
|
snssd |
⊢ ( 𝜑 → { 𝐾 } ⊆ 𝐴 ) |
9 |
|
undif |
⊢ ( { 𝐾 } ⊆ 𝐴 ↔ ( { 𝐾 } ∪ ( 𝐴 ∖ { 𝐾 } ) ) = 𝐴 ) |
10 |
8 9
|
sylib |
⊢ ( 𝜑 → ( { 𝐾 } ∪ ( 𝐴 ∖ { 𝐾 } ) ) = 𝐴 ) |
11 |
10
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( { 𝐾 } ∪ ( 𝐴 ∖ { 𝐾 } ) ) ) |
12 |
7 11 2 3
|
fprodsplit |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = ( ∏ 𝑘 ∈ { 𝐾 } 𝐵 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) 𝐵 ) ) |
13 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
14 |
5 13
|
eqeltrd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
15 |
1
|
prodsn |
⊢ ( ( 𝐾 ∈ 𝐴 ∧ 𝐶 ∈ ℂ ) → ∏ 𝑘 ∈ { 𝐾 } 𝐵 = 𝐶 ) |
16 |
4 14 15
|
syl2anc |
⊢ ( 𝜑 → ∏ 𝑘 ∈ { 𝐾 } 𝐵 = 𝐶 ) |
17 |
16 5
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ { 𝐾 } 𝐵 = 0 ) |
18 |
17
|
oveq1d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ { 𝐾 } 𝐵 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) 𝐵 ) = ( 0 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) 𝐵 ) ) |
19 |
|
diffi |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝐾 } ) ∈ Fin ) |
20 |
2 19
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∖ { 𝐾 } ) ∈ Fin ) |
21 |
|
difssd |
⊢ ( 𝜑 → ( 𝐴 ∖ { 𝐾 } ) ⊆ 𝐴 ) |
22 |
21
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) ) → 𝑘 ∈ 𝐴 ) |
23 |
22 3
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) ) → 𝐵 ∈ ℂ ) |
24 |
20 23
|
fprodcl |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) 𝐵 ∈ ℂ ) |
25 |
24
|
mul02d |
⊢ ( 𝜑 → ( 0 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐾 } ) 𝐵 ) = 0 ) |
26 |
12 18 25
|
3eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = 0 ) |