| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodeq0g.kph |
⊢ Ⅎ 𝑘 𝜑 |
| 2 |
|
fprodeq0g.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 3 |
|
fprodeq0g.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 4 |
|
fprodeq0g.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) |
| 5 |
|
fprodeq0g.b0 |
⊢ ( ( 𝜑 ∧ 𝑘 = 𝐶 ) → 𝐵 = 0 ) |
| 6 |
|
nfcvd |
⊢ ( 𝜑 → Ⅎ 𝑘 0 ) |
| 7 |
1 6 2 3 4 5
|
fprodsplit1f |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = ( 0 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) ) |
| 8 |
|
diffi |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝐶 } ) ∈ Fin ) |
| 9 |
2 8
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∖ { 𝐶 } ) ∈ Fin ) |
| 10 |
|
eldifi |
⊢ ( 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) → 𝑘 ∈ 𝐴 ) |
| 11 |
10 3
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) ) → 𝐵 ∈ ℂ ) |
| 12 |
1 9 11
|
fprodclf |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ∈ ℂ ) |
| 13 |
12
|
mul02d |
⊢ ( 𝜑 → ( 0 · ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝐶 } ) 𝐵 ) = 0 ) |
| 14 |
7 13
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 = 0 ) |