| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodexp.kph | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | fprodexp.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 3 |  | fprodexp.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 4 |  | fprodexp.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 5 |  | prodeq1 | ⊢ ( 𝑥  =  ∅  →  ∏ 𝑘  ∈  𝑥 ( 𝐵 ↑ 𝑁 )  =  ∏ 𝑘  ∈  ∅ ( 𝐵 ↑ 𝑁 ) ) | 
						
							| 6 |  | prodeq1 | ⊢ ( 𝑥  =  ∅  →  ∏ 𝑘  ∈  𝑥 𝐵  =  ∏ 𝑘  ∈  ∅ 𝐵 ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( 𝑥  =  ∅  →  ( ∏ 𝑘  ∈  𝑥 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  ∅ 𝐵 ↑ 𝑁 ) ) | 
						
							| 8 | 5 7 | eqeq12d | ⊢ ( 𝑥  =  ∅  →  ( ∏ 𝑘  ∈  𝑥 ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝑥 𝐵 ↑ 𝑁 )  ↔  ∏ 𝑘  ∈  ∅ ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  ∅ 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 9 |  | prodeq1 | ⊢ ( 𝑥  =  𝑦  →  ∏ 𝑘  ∈  𝑥 ( 𝐵 ↑ 𝑁 )  =  ∏ 𝑘  ∈  𝑦 ( 𝐵 ↑ 𝑁 ) ) | 
						
							| 10 |  | prodeq1 | ⊢ ( 𝑥  =  𝑦  →  ∏ 𝑘  ∈  𝑥 𝐵  =  ∏ 𝑘  ∈  𝑦 𝐵 ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝑥  =  𝑦  →  ( ∏ 𝑘  ∈  𝑥 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝑦 𝐵 ↑ 𝑁 ) ) | 
						
							| 12 | 9 11 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ∏ 𝑘  ∈  𝑥 ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝑥 𝐵 ↑ 𝑁 )  ↔  ∏ 𝑘  ∈  𝑦 ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝑦 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 13 |  | prodeq1 | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ∏ 𝑘  ∈  𝑥 ( 𝐵 ↑ 𝑁 )  =  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐵 ↑ 𝑁 ) ) | 
						
							| 14 |  | prodeq1 | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ∏ 𝑘  ∈  𝑥 𝐵  =  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵 ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ∏ 𝑘  ∈  𝑥 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵 ↑ 𝑁 ) ) | 
						
							| 16 | 13 15 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑧 } )  →  ( ∏ 𝑘  ∈  𝑥 ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝑥 𝐵 ↑ 𝑁 )  ↔  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 17 |  | prodeq1 | ⊢ ( 𝑥  =  𝐴  →  ∏ 𝑘  ∈  𝑥 ( 𝐵 ↑ 𝑁 )  =  ∏ 𝑘  ∈  𝐴 ( 𝐵 ↑ 𝑁 ) ) | 
						
							| 18 |  | prodeq1 | ⊢ ( 𝑥  =  𝐴  →  ∏ 𝑘  ∈  𝑥 𝐵  =  ∏ 𝑘  ∈  𝐴 𝐵 ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ∏ 𝑘  ∈  𝑥 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝐴 𝐵 ↑ 𝑁 ) ) | 
						
							| 20 | 17 19 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ∏ 𝑘  ∈  𝑥 ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝑥 𝐵 ↑ 𝑁 )  ↔  ∏ 𝑘  ∈  𝐴 ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝐴 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 21 | 2 | nn0zd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 22 |  | 1exp | ⊢ ( 𝑁  ∈  ℤ  →  ( 1 ↑ 𝑁 )  =  1 ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝜑  →  ( 1 ↑ 𝑁 )  =  1 ) | 
						
							| 24 | 23 | eqcomd | ⊢ ( 𝜑  →  1  =  ( 1 ↑ 𝑁 ) ) | 
						
							| 25 |  | prod0 | ⊢ ∏ 𝑘  ∈  ∅ ( 𝐵 ↑ 𝑁 )  =  1 | 
						
							| 26 | 25 | a1i | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ∅ ( 𝐵 ↑ 𝑁 )  =  1 ) | 
						
							| 27 |  | prod0 | ⊢ ∏ 𝑘  ∈  ∅ 𝐵  =  1 | 
						
							| 28 | 27 | oveq1i | ⊢ ( ∏ 𝑘  ∈  ∅ 𝐵 ↑ 𝑁 )  =  ( 1 ↑ 𝑁 ) | 
						
							| 29 | 28 | a1i | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ∅ 𝐵 ↑ 𝑁 )  =  ( 1 ↑ 𝑁 ) ) | 
						
							| 30 | 24 26 29 | 3eqtr4d | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ∅ ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  ∅ 𝐵 ↑ 𝑁 ) ) | 
						
							| 31 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) | 
						
							| 32 | 1 31 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) ) | 
						
							| 33 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ⊆  𝐴 )  →  𝐴  ∈  Fin ) | 
						
							| 34 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ⊆  𝐴 )  →  𝑦  ⊆  𝐴 ) | 
						
							| 35 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑦  ⊆  𝐴 )  →  𝑦  ∈  Fin ) | 
						
							| 36 | 33 34 35 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ⊆  𝐴 )  →  𝑦  ∈  Fin ) | 
						
							| 37 | 36 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  𝑦  ∈  Fin ) | 
						
							| 38 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑦  ⊆  𝐴 )  ∧  𝑘  ∈  𝑦 )  →  𝜑 ) | 
						
							| 39 | 34 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑦  ⊆  𝐴 )  ∧  𝑘  ∈  𝑦 )  →  𝑘  ∈  𝐴 ) | 
						
							| 40 | 38 39 4 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ⊆  𝐴 )  ∧  𝑘  ∈  𝑦 )  →  𝐵  ∈  ℂ ) | 
						
							| 41 | 40 | adantlrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  𝑦 )  →  𝐵  ∈  ℂ ) | 
						
							| 42 | 32 37 41 | fprodclf | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ∏ 𝑘  ∈  𝑦 𝐵  ∈  ℂ ) | 
						
							| 43 |  | simpl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  𝜑 ) | 
						
							| 44 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) | 
						
							| 45 | 44 | eldifad | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  𝑧  ∈  𝐴 ) | 
						
							| 46 |  | nfv | ⊢ Ⅎ 𝑘 𝑧  ∈  𝐴 | 
						
							| 47 | 1 46 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑧  ∈  𝐴 ) | 
						
							| 48 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑧  /  𝑘 ⦌ 𝐵 | 
						
							| 49 | 48 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑧  /  𝑘 ⦌ 𝐵  ∈  ℂ | 
						
							| 50 | 47 49 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  ⦋ 𝑧  /  𝑘 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 51 |  | eleq1w | ⊢ ( 𝑘  =  𝑧  →  ( 𝑘  ∈  𝐴  ↔  𝑧  ∈  𝐴 ) ) | 
						
							| 52 | 51 | anbi2d | ⊢ ( 𝑘  =  𝑧  →  ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝑧  ∈  𝐴 ) ) ) | 
						
							| 53 |  | csbeq1a | ⊢ ( 𝑘  =  𝑧  →  𝐵  =  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) | 
						
							| 54 | 53 | eleq1d | ⊢ ( 𝑘  =  𝑧  →  ( 𝐵  ∈  ℂ  ↔  ⦋ 𝑧  /  𝑘 ⦌ 𝐵  ∈  ℂ ) ) | 
						
							| 55 | 52 54 | imbi12d | ⊢ ( 𝑘  =  𝑧  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  ⦋ 𝑧  /  𝑘 ⦌ 𝐵  ∈  ℂ ) ) ) | 
						
							| 56 | 50 55 4 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑧  ∈  𝐴 )  →  ⦋ 𝑧  /  𝑘 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 57 | 43 45 56 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ⦋ 𝑧  /  𝑘 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 58 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  𝑁  ∈  ℕ0 ) | 
						
							| 59 |  | mulexp | ⊢ ( ( ∏ 𝑘  ∈  𝑦 𝐵  ∈  ℂ  ∧  ⦋ 𝑧  /  𝑘 ⦌ 𝐵  ∈  ℂ  ∧  𝑁  ∈  ℕ0 )  →  ( ( ∏ 𝑘  ∈  𝑦 𝐵  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ↑ 𝑁 )  =  ( ( ∏ 𝑘  ∈  𝑦 𝐵 ↑ 𝑁 )  ·  ( ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 60 | 42 57 58 59 | syl3anc | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( ( ∏ 𝑘  ∈  𝑦 𝐵  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ↑ 𝑁 )  =  ( ( ∏ 𝑘  ∈  𝑦 𝐵 ↑ 𝑁 )  ·  ( ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 61 | 60 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( ( ∏ 𝑘  ∈  𝑦 𝐵 ↑ 𝑁 )  ·  ( ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ↑ 𝑁 ) )  =  ( ( ∏ 𝑘  ∈  𝑦 𝐵  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ↑ 𝑁 ) ) | 
						
							| 62 | 61 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ∏ 𝑘  ∈  𝑦 ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝑦 𝐵 ↑ 𝑁 ) )  →  ( ( ∏ 𝑘  ∈  𝑦 𝐵 ↑ 𝑁 )  ·  ( ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ↑ 𝑁 ) )  =  ( ( ∏ 𝑘  ∈  𝑦 𝐵  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ↑ 𝑁 ) ) | 
						
							| 63 |  | nfcv | ⊢ Ⅎ 𝑘 ↑ | 
						
							| 64 |  | nfcv | ⊢ Ⅎ 𝑘 𝑁 | 
						
							| 65 | 48 63 64 | nfov | ⊢ Ⅎ 𝑘 ( ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ↑ 𝑁 ) | 
						
							| 66 | 44 | eldifbd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ¬  𝑧  ∈  𝑦 ) | 
						
							| 67 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ⊆  𝐴 )  ∧  𝑘  ∈  𝑦 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 68 | 40 67 | expcld | ⊢ ( ( ( 𝜑  ∧  𝑦  ⊆  𝐴 )  ∧  𝑘  ∈  𝑦 )  →  ( 𝐵 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 69 | 68 | adantlrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  𝑦 )  →  ( 𝐵 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 70 | 53 | oveq1d | ⊢ ( 𝑘  =  𝑧  →  ( 𝐵 ↑ 𝑁 )  =  ( ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) | 
						
							| 71 | 57 58 | expcld | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 72 | 32 65 37 44 66 69 70 71 | fprodsplitsn | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝑦 ( 𝐵 ↑ 𝑁 )  ·  ( ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ∏ 𝑘  ∈  𝑦 ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝑦 𝐵 ↑ 𝑁 ) )  →  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝑦 ( 𝐵 ↑ 𝑁 )  ·  ( ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 74 |  | oveq1 | ⊢ ( ∏ 𝑘  ∈  𝑦 ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝑦 𝐵 ↑ 𝑁 )  →  ( ∏ 𝑘  ∈  𝑦 ( 𝐵 ↑ 𝑁 )  ·  ( ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ↑ 𝑁 ) )  =  ( ( ∏ 𝑘  ∈  𝑦 𝐵 ↑ 𝑁 )  ·  ( ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 75 | 74 | adantl | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ∏ 𝑘  ∈  𝑦 ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝑦 𝐵 ↑ 𝑁 ) )  →  ( ∏ 𝑘  ∈  𝑦 ( 𝐵 ↑ 𝑁 )  ·  ( ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ↑ 𝑁 ) )  =  ( ( ∏ 𝑘  ∈  𝑦 𝐵 ↑ 𝑁 )  ·  ( ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 76 | 73 75 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ∏ 𝑘  ∈  𝑦 ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝑦 𝐵 ↑ 𝑁 ) )  →  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐵 ↑ 𝑁 )  =  ( ( ∏ 𝑘  ∈  𝑦 𝐵 ↑ 𝑁 )  ·  ( ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 77 | 32 48 37 44 66 41 53 57 | fprodsplitsn | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵  =  ( ∏ 𝑘  ∈  𝑦 𝐵  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ∏ 𝑘  ∈  𝑦 ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝑦 𝐵 ↑ 𝑁 ) )  →  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵  =  ( ∏ 𝑘  ∈  𝑦 𝐵  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 79 | 78 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ∏ 𝑘  ∈  𝑦 ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝑦 𝐵 ↑ 𝑁 ) )  →  ( ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵 ↑ 𝑁 )  =  ( ( ∏ 𝑘  ∈  𝑦 𝐵  ·  ⦋ 𝑧  /  𝑘 ⦌ 𝐵 ) ↑ 𝑁 ) ) | 
						
							| 80 | 62 76 79 | 3eqtr4d | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ∏ 𝑘  ∈  𝑦 ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝑦 𝐵 ↑ 𝑁 ) )  →  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵 ↑ 𝑁 ) ) | 
						
							| 81 | 80 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑧  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( ∏ 𝑘  ∈  𝑦 ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝑦 𝐵 ↑ 𝑁 )  →  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑧 } ) 𝐵 ↑ 𝑁 ) ) ) | 
						
							| 82 | 8 12 16 20 30 81 3 | findcard2d | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 ( 𝐵 ↑ 𝑁 )  =  ( ∏ 𝑘  ∈  𝐴 𝐵 ↑ 𝑁 ) ) |