| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodf1o.1 | ⊢ ( 𝑘  =  𝐺  →  𝐵  =  𝐷 ) | 
						
							| 2 |  | fprodf1o.2 | ⊢ ( 𝜑  →  𝐶  ∈  Fin ) | 
						
							| 3 |  | fprodf1o.3 | ⊢ ( 𝜑  →  𝐹 : 𝐶 –1-1-onto→ 𝐴 ) | 
						
							| 4 |  | fprodf1o.4 | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐶 )  →  ( 𝐹 ‘ 𝑛 )  =  𝐺 ) | 
						
							| 5 |  | fprodf1o.5 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 6 |  | prod0 | ⊢ ∏ 𝑘  ∈  ∅ 𝐵  =  1 | 
						
							| 7 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  =  ∅ )  →  𝐹 : 𝐶 –1-1-onto→ 𝐴 ) | 
						
							| 8 |  | f1oeq2 | ⊢ ( 𝐶  =  ∅  →  ( 𝐹 : 𝐶 –1-1-onto→ 𝐴  ↔  𝐹 : ∅ –1-1-onto→ 𝐴 ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝜑  ∧  𝐶  =  ∅ )  →  ( 𝐹 : 𝐶 –1-1-onto→ 𝐴  ↔  𝐹 : ∅ –1-1-onto→ 𝐴 ) ) | 
						
							| 10 | 7 9 | mpbid | ⊢ ( ( 𝜑  ∧  𝐶  =  ∅ )  →  𝐹 : ∅ –1-1-onto→ 𝐴 ) | 
						
							| 11 |  | f1ofo | ⊢ ( 𝐹 : ∅ –1-1-onto→ 𝐴  →  𝐹 : ∅ –onto→ 𝐴 ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( 𝜑  ∧  𝐶  =  ∅ )  →  𝐹 : ∅ –onto→ 𝐴 ) | 
						
							| 13 |  | fo00 | ⊢ ( 𝐹 : ∅ –onto→ 𝐴  ↔  ( 𝐹  =  ∅  ∧  𝐴  =  ∅ ) ) | 
						
							| 14 | 13 | simprbi | ⊢ ( 𝐹 : ∅ –onto→ 𝐴  →  𝐴  =  ∅ ) | 
						
							| 15 | 12 14 | syl | ⊢ ( ( 𝜑  ∧  𝐶  =  ∅ )  →  𝐴  =  ∅ ) | 
						
							| 16 | 15 | prodeq1d | ⊢ ( ( 𝜑  ∧  𝐶  =  ∅ )  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ∏ 𝑘  ∈  ∅ 𝐵 ) | 
						
							| 17 |  | prodeq1 | ⊢ ( 𝐶  =  ∅  →  ∏ 𝑛  ∈  𝐶 𝐷  =  ∏ 𝑛  ∈  ∅ 𝐷 ) | 
						
							| 18 |  | prod0 | ⊢ ∏ 𝑛  ∈  ∅ 𝐷  =  1 | 
						
							| 19 | 17 18 | eqtrdi | ⊢ ( 𝐶  =  ∅  →  ∏ 𝑛  ∈  𝐶 𝐷  =  1 ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝜑  ∧  𝐶  =  ∅ )  →  ∏ 𝑛  ∈  𝐶 𝐷  =  1 ) | 
						
							| 21 | 6 16 20 | 3eqtr4a | ⊢ ( ( 𝜑  ∧  𝐶  =  ∅ )  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ∏ 𝑛  ∈  𝐶 𝐷 ) | 
						
							| 22 | 21 | ex | ⊢ ( 𝜑  →  ( 𝐶  =  ∅  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ∏ 𝑛  ∈  𝐶 𝐷 ) ) | 
						
							| 23 |  | 2fveq3 | ⊢ ( 𝑚  =  ( 𝑓 ‘ 𝑛 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) | 
						
							| 24 |  | simprl | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) )  →  ( ♯ ‘ 𝐶 )  ∈  ℕ ) | 
						
							| 25 |  | simprr | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) )  →  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) | 
						
							| 26 |  | f1of | ⊢ ( 𝐹 : 𝐶 –1-1-onto→ 𝐴  →  𝐹 : 𝐶 ⟶ 𝐴 ) | 
						
							| 27 | 3 26 | syl | ⊢ ( 𝜑  →  𝐹 : 𝐶 ⟶ 𝐴 ) | 
						
							| 28 | 27 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝐶 )  →  ( 𝐹 ‘ 𝑚 )  ∈  𝐴 ) | 
						
							| 29 | 5 | fmpttd | ⊢ ( 𝜑  →  ( 𝑘  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℂ ) | 
						
							| 30 | 29 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  ( 𝐹 ‘ 𝑚 )  ∈  𝐴 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) )  ∈  ℂ ) | 
						
							| 31 | 28 30 | syldan | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝐶 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) )  ∈  ℂ ) | 
						
							| 32 | 31 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) )  ∧  𝑚  ∈  𝐶 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) )  ∈  ℂ ) | 
						
							| 33 |  | simpr | ⊢ ( ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 )  →  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) | 
						
							| 34 |  | f1oco | ⊢ ( ( 𝐹 : 𝐶 –1-1-onto→ 𝐴  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 )  →  ( 𝐹  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐴 ) | 
						
							| 35 | 3 33 34 | syl2an | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) )  →  ( 𝐹  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐴 ) | 
						
							| 36 |  | f1of | ⊢ ( ( 𝐹  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐴  →  ( 𝐹  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐴 ) | 
						
							| 37 | 35 36 | syl | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) )  →  ( 𝐹  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐴 ) | 
						
							| 38 |  | fvco3 | ⊢ ( ( ( 𝐹  ∘  𝑓 ) : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐴  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐶 ) ) )  →  ( ( ( 𝑘  ∈  𝐴  ↦  𝐵 )  ∘  ( 𝐹  ∘  𝑓 ) ) ‘ 𝑛 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( ( 𝐹  ∘  𝑓 ) ‘ 𝑛 ) ) ) | 
						
							| 39 | 37 38 | sylan | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐶 ) ) )  →  ( ( ( 𝑘  ∈  𝐴  ↦  𝐵 )  ∘  ( 𝐹  ∘  𝑓 ) ) ‘ 𝑛 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( ( 𝐹  ∘  𝑓 ) ‘ 𝑛 ) ) ) | 
						
							| 40 |  | f1of | ⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶  →  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐶 ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 )  →  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐶 ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) )  →  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐶 ) | 
						
							| 43 |  | fvco3 | ⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) ⟶ 𝐶  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐶 ) ) )  →  ( ( 𝐹  ∘  𝑓 ) ‘ 𝑛 )  =  ( 𝐹 ‘ ( 𝑓 ‘ 𝑛 ) ) ) | 
						
							| 44 | 42 43 | sylan | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐶 ) ) )  →  ( ( 𝐹  ∘  𝑓 ) ‘ 𝑛 )  =  ( 𝐹 ‘ ( 𝑓 ‘ 𝑛 ) ) ) | 
						
							| 45 | 44 | fveq2d | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐶 ) ) )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( ( 𝐹  ∘  𝑓 ) ‘ 𝑛 ) )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) | 
						
							| 46 | 39 45 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) )  ∧  𝑛  ∈  ( 1 ... ( ♯ ‘ 𝐶 ) ) )  →  ( ( ( 𝑘  ∈  𝐴  ↦  𝐵 )  ∘  ( 𝐹  ∘  𝑓 ) ) ‘ 𝑛 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ ( 𝑓 ‘ 𝑛 ) ) ) ) | 
						
							| 47 | 23 24 25 32 46 | fprod | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) )  →  ∏ 𝑚  ∈  𝐶 ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) )  =  ( seq 1 (  ·  ,  ( ( 𝑘  ∈  𝐴  ↦  𝐵 )  ∘  ( 𝐹  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝐶 ) ) ) | 
						
							| 48 | 27 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐶 )  →  ( 𝐹 ‘ 𝑛 )  ∈  𝐴 ) | 
						
							| 49 | 4 48 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐶 )  →  𝐺  ∈  𝐴 ) | 
						
							| 50 |  | eqid | ⊢ ( 𝑘  ∈  𝐴  ↦  𝐵 )  =  ( 𝑘  ∈  𝐴  ↦  𝐵 ) | 
						
							| 51 | 1 50 | fvmpti | ⊢ ( 𝐺  ∈  𝐴  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝐺 )  =  (  I  ‘ 𝐷 ) ) | 
						
							| 52 | 49 51 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐶 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝐺 )  =  (  I  ‘ 𝐷 ) ) | 
						
							| 53 | 4 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐶 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ 𝑛 ) )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝐺 ) ) | 
						
							| 54 |  | eqid | ⊢ ( 𝑛  ∈  𝐶  ↦  𝐷 )  =  ( 𝑛  ∈  𝐶  ↦  𝐷 ) | 
						
							| 55 | 54 | fvmpt2i | ⊢ ( 𝑛  ∈  𝐶  →  ( ( 𝑛  ∈  𝐶  ↦  𝐷 ) ‘ 𝑛 )  =  (  I  ‘ 𝐷 ) ) | 
						
							| 56 | 55 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐶 )  →  ( ( 𝑛  ∈  𝐶  ↦  𝐷 ) ‘ 𝑛 )  =  (  I  ‘ 𝐷 ) ) | 
						
							| 57 | 52 53 56 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝐶 )  →  ( ( 𝑛  ∈  𝐶  ↦  𝐷 ) ‘ 𝑛 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 58 | 57 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  𝐶 ( ( 𝑛  ∈  𝐶  ↦  𝐷 ) ‘ 𝑛 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ 𝑛 ) ) ) | 
						
							| 59 |  | nffvmpt1 | ⊢ Ⅎ 𝑛 ( ( 𝑛  ∈  𝐶  ↦  𝐷 ) ‘ 𝑚 ) | 
						
							| 60 | 59 | nfeq1 | ⊢ Ⅎ 𝑛 ( ( 𝑛  ∈  𝐶  ↦  𝐷 ) ‘ 𝑚 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) | 
						
							| 61 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑛  ∈  𝐶  ↦  𝐷 ) ‘ 𝑛 )  =  ( ( 𝑛  ∈  𝐶  ↦  𝐷 ) ‘ 𝑚 ) ) | 
						
							| 62 |  | 2fveq3 | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ 𝑛 ) )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 63 | 61 62 | eqeq12d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( 𝑛  ∈  𝐶  ↦  𝐷 ) ‘ 𝑛 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ 𝑛 ) )  ↔  ( ( 𝑛  ∈  𝐶  ↦  𝐷 ) ‘ 𝑚 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) | 
						
							| 64 | 60 63 | rspc | ⊢ ( 𝑚  ∈  𝐶  →  ( ∀ 𝑛  ∈  𝐶 ( ( 𝑛  ∈  𝐶  ↦  𝐷 ) ‘ 𝑛 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ 𝑛 ) )  →  ( ( 𝑛  ∈  𝐶  ↦  𝐷 ) ‘ 𝑚 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ) ) | 
						
							| 65 | 58 64 | mpan9 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝐶 )  →  ( ( 𝑛  ∈  𝐶  ↦  𝐷 ) ‘ 𝑚 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 66 | 65 | adantlr | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) )  ∧  𝑚  ∈  𝐶 )  →  ( ( 𝑛  ∈  𝐶  ↦  𝐷 ) ‘ 𝑚 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 67 | 66 | prodeq2dv | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) )  →  ∏ 𝑚  ∈  𝐶 ( ( 𝑛  ∈  𝐶  ↦  𝐷 ) ‘ 𝑚 )  =  ∏ 𝑚  ∈  𝐶 ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( 𝐹 ‘ 𝑚 ) ) ) | 
						
							| 68 |  | fveq2 | ⊢ ( 𝑚  =  ( ( 𝐹  ∘  𝑓 ) ‘ 𝑛 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑚 )  =  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ ( ( 𝐹  ∘  𝑓 ) ‘ 𝑛 ) ) ) | 
						
							| 69 | 29 | adantr | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) )  →  ( 𝑘  ∈  𝐴  ↦  𝐵 ) : 𝐴 ⟶ ℂ ) | 
						
							| 70 | 69 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) )  ∧  𝑚  ∈  𝐴 )  →  ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑚 )  ∈  ℂ ) | 
						
							| 71 | 68 24 35 70 39 | fprod | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) )  →  ∏ 𝑚  ∈  𝐴 ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑚 )  =  ( seq 1 (  ·  ,  ( ( 𝑘  ∈  𝐴  ↦  𝐵 )  ∘  ( 𝐹  ∘  𝑓 ) ) ) ‘ ( ♯ ‘ 𝐶 ) ) ) | 
						
							| 72 | 47 67 71 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) )  →  ∏ 𝑚  ∈  𝐴 ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑚 )  =  ∏ 𝑚  ∈  𝐶 ( ( 𝑛  ∈  𝐶  ↦  𝐷 ) ‘ 𝑚 ) ) | 
						
							| 73 |  | prodfc | ⊢ ∏ 𝑚  ∈  𝐴 ( ( 𝑘  ∈  𝐴  ↦  𝐵 ) ‘ 𝑚 )  =  ∏ 𝑘  ∈  𝐴 𝐵 | 
						
							| 74 |  | prodfc | ⊢ ∏ 𝑚  ∈  𝐶 ( ( 𝑛  ∈  𝐶  ↦  𝐷 ) ‘ 𝑚 )  =  ∏ 𝑛  ∈  𝐶 𝐷 | 
						
							| 75 | 72 73 74 | 3eqtr3g | ⊢ ( ( 𝜑  ∧  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) )  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ∏ 𝑛  ∈  𝐶 𝐷 ) | 
						
							| 76 | 75 | expr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝐶 )  ∈  ℕ )  →  ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ∏ 𝑛  ∈  𝐶 𝐷 ) ) | 
						
							| 77 | 76 | exlimdv | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝐶 )  ∈  ℕ )  →  ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ∏ 𝑛  ∈  𝐶 𝐷 ) ) | 
						
							| 78 | 77 | expimpd | ⊢ ( 𝜑  →  ( ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 )  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ∏ 𝑛  ∈  𝐶 𝐷 ) ) | 
						
							| 79 |  | fz1f1o | ⊢ ( 𝐶  ∈  Fin  →  ( 𝐶  =  ∅  ∨  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ) | 
						
							| 80 | 2 79 | syl | ⊢ ( 𝜑  →  ( 𝐶  =  ∅  ∨  ( ( ♯ ‘ 𝐶 )  ∈  ℕ  ∧  ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐶 ) ) –1-1-onto→ 𝐶 ) ) ) | 
						
							| 81 | 22 78 80 | mpjaod | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ∏ 𝑛  ∈  𝐶 𝐷 ) |