| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elnn0 | ⊢ ( 𝐴  ∈  ℕ0  ↔  ( 𝐴  ∈  ℕ  ∨  𝐴  =  0 ) ) | 
						
							| 2 |  | facnn | ⊢ ( 𝐴  ∈  ℕ  →  ( ! ‘ 𝐴 )  =  ( seq 1 (  ·  ,   I  ) ‘ 𝐴 ) ) | 
						
							| 3 |  | vex | ⊢ 𝑘  ∈  V | 
						
							| 4 |  | fvi | ⊢ ( 𝑘  ∈  V  →  (  I  ‘ 𝑘 )  =  𝑘 ) | 
						
							| 5 | 3 4 | mp1i | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝐴 ) )  →  (  I  ‘ 𝑘 )  =  𝑘 ) | 
						
							| 6 |  | elnnuz | ⊢ ( 𝐴  ∈  ℕ  ↔  𝐴  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 7 | 6 | biimpi | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ( ℤ≥ ‘ 1 ) ) | 
						
							| 8 |  | elfznn | ⊢ ( 𝑘  ∈  ( 1 ... 𝐴 )  →  𝑘  ∈  ℕ ) | 
						
							| 9 | 8 | nncnd | ⊢ ( 𝑘  ∈  ( 1 ... 𝐴 )  →  𝑘  ∈  ℂ ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝐴  ∈  ℕ  ∧  𝑘  ∈  ( 1 ... 𝐴 ) )  →  𝑘  ∈  ℂ ) | 
						
							| 11 | 5 7 10 | fprodser | ⊢ ( 𝐴  ∈  ℕ  →  ∏ 𝑘  ∈  ( 1 ... 𝐴 ) 𝑘  =  ( seq 1 (  ·  ,   I  ) ‘ 𝐴 ) ) | 
						
							| 12 | 2 11 | eqtr4d | ⊢ ( 𝐴  ∈  ℕ  →  ( ! ‘ 𝐴 )  =  ∏ 𝑘  ∈  ( 1 ... 𝐴 ) 𝑘 ) | 
						
							| 13 |  | prod0 | ⊢ ∏ 𝑘  ∈  ∅ 𝑘  =  1 | 
						
							| 14 | 13 | eqcomi | ⊢ 1  =  ∏ 𝑘  ∈  ∅ 𝑘 | 
						
							| 15 |  | fveq2 | ⊢ ( 𝐴  =  0  →  ( ! ‘ 𝐴 )  =  ( ! ‘ 0 ) ) | 
						
							| 16 |  | fac0 | ⊢ ( ! ‘ 0 )  =  1 | 
						
							| 17 | 15 16 | eqtrdi | ⊢ ( 𝐴  =  0  →  ( ! ‘ 𝐴 )  =  1 ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝐴  =  0  →  ( 1 ... 𝐴 )  =  ( 1 ... 0 ) ) | 
						
							| 19 |  | fz10 | ⊢ ( 1 ... 0 )  =  ∅ | 
						
							| 20 | 18 19 | eqtrdi | ⊢ ( 𝐴  =  0  →  ( 1 ... 𝐴 )  =  ∅ ) | 
						
							| 21 | 20 | prodeq1d | ⊢ ( 𝐴  =  0  →  ∏ 𝑘  ∈  ( 1 ... 𝐴 ) 𝑘  =  ∏ 𝑘  ∈  ∅ 𝑘 ) | 
						
							| 22 | 14 17 21 | 3eqtr4a | ⊢ ( 𝐴  =  0  →  ( ! ‘ 𝐴 )  =  ∏ 𝑘  ∈  ( 1 ... 𝐴 ) 𝑘 ) | 
						
							| 23 | 12 22 | jaoi | ⊢ ( ( 𝐴  ∈  ℕ  ∨  𝐴  =  0 )  →  ( ! ‘ 𝐴 )  =  ∏ 𝑘  ∈  ( 1 ... 𝐴 ) 𝑘 ) | 
						
							| 24 | 1 23 | sylbi | ⊢ ( 𝐴  ∈  ℕ0  →  ( ! ‘ 𝐴 )  =  ∏ 𝑘  ∈  ( 1 ... 𝐴 ) 𝑘 ) |