Step |
Hyp |
Ref |
Expression |
1 |
|
fprodfvdvdsd.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fprodfvdvdsd.b |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
3 |
|
fprodfvdvdsd.f |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ℤ ) |
4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ∈ Fin ) |
5 |
|
diffi |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 ∖ { 𝑥 } ) ∈ Fin ) |
6 |
4 5
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑥 } ) ∈ Fin ) |
7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝐹 : 𝐵 ⟶ ℤ ) |
8 |
2
|
ssdifssd |
⊢ ( 𝜑 → ( 𝐴 ∖ { 𝑥 } ) ⊆ 𝐵 ) |
9 |
8
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → 𝑘 ∈ 𝐵 ) |
10 |
7 9
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) |
11 |
10
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) |
12 |
6 11
|
fprodzcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) |
13 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐹 : 𝐵 ⟶ ℤ ) |
14 |
2
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
15 |
13 14
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) |
16 |
|
dvdsmul2 |
⊢ ( ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) ∈ ℤ ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℤ ) → ( 𝐹 ‘ 𝑥 ) ∥ ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) · ( 𝐹 ‘ 𝑥 ) ) ) |
17 |
12 15 16
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∥ ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) · ( 𝐹 ‘ 𝑥 ) ) ) |
18 |
17
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∥ ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) · ( 𝐹 ‘ 𝑥 ) ) ) |
19 |
|
neldifsnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ∈ ( 𝐴 ∖ { 𝑥 } ) ) |
20 |
|
disjsn |
⊢ ( ( ( 𝐴 ∖ { 𝑥 } ) ∩ { 𝑥 } ) = ∅ ↔ ¬ 𝑥 ∈ ( 𝐴 ∖ { 𝑥 } ) ) |
21 |
19 20
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 ∖ { 𝑥 } ) ∩ { 𝑥 } ) = ∅ ) |
22 |
|
difsnid |
⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = 𝐴 ) |
23 |
22
|
eqcomd |
⊢ ( 𝑥 ∈ 𝐴 → 𝐴 = ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 = ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) |
25 |
13
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐹 : 𝐵 ⟶ ℤ ) |
26 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ 𝐵 ) |
27 |
26
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ 𝐵 ) |
28 |
25 27
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) |
29 |
28
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
30 |
21 24 4 29
|
fprodsplit |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∏ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) · ∏ 𝑘 ∈ { 𝑥 } ( 𝐹 ‘ 𝑘 ) ) ) |
31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
32 |
15
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) |
33 |
|
fveq2 |
⊢ ( 𝑘 = 𝑥 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑥 ) ) |
34 |
33
|
prodsn |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ ( 𝐹 ‘ 𝑥 ) ∈ ℂ ) → ∏ 𝑘 ∈ { 𝑥 } ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑥 ) ) |
35 |
31 32 34
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∏ 𝑘 ∈ { 𝑥 } ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑥 ) ) |
36 |
35
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) · ∏ 𝑘 ∈ { 𝑥 } ( 𝐹 ‘ 𝑘 ) ) = ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) · ( 𝐹 ‘ 𝑥 ) ) ) |
37 |
30 36
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∏ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) = ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) · ( 𝐹 ‘ 𝑥 ) ) ) |
38 |
37
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑥 ) ∥ ∏ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐹 ‘ 𝑥 ) ∥ ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
39 |
38
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∥ ∏ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∥ ( ∏ 𝑘 ∈ ( 𝐴 ∖ { 𝑥 } ) ( 𝐹 ‘ 𝑘 ) · ( 𝐹 ‘ 𝑥 ) ) ) ) |
40 |
18 39
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∥ ∏ 𝑘 ∈ 𝐴 ( 𝐹 ‘ 𝑘 ) ) |