Metamath Proof Explorer


Theorem fprodge1

Description: If all of the terms of a finite product are greater than or equal to 1 , so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodge1.ph 𝑘 𝜑
fprodge1.a ( 𝜑𝐴 ∈ Fin )
fprodge1.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ )
fprodge1.ge ( ( 𝜑𝑘𝐴 ) → 1 ≤ 𝐵 )
Assertion fprodge1 ( 𝜑 → 1 ≤ ∏ 𝑘𝐴 𝐵 )

Proof

Step Hyp Ref Expression
1 fprodge1.ph 𝑘 𝜑
2 fprodge1.a ( 𝜑𝐴 ∈ Fin )
3 fprodge1.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ )
4 fprodge1.ge ( ( 𝜑𝑘𝐴 ) → 1 ≤ 𝐵 )
5 1xr 1 ∈ ℝ*
6 pnfxr +∞ ∈ ℝ*
7 1re 1 ∈ ℝ
8 icossre ( ( 1 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 1 [,) +∞ ) ⊆ ℝ )
9 7 6 8 mp2an ( 1 [,) +∞ ) ⊆ ℝ
10 ax-resscn ℝ ⊆ ℂ
11 9 10 sstri ( 1 [,) +∞ ) ⊆ ℂ
12 11 a1i ( 𝜑 → ( 1 [,) +∞ ) ⊆ ℂ )
13 5 a1i ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ∈ ℝ* )
14 6 a1i ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → +∞ ∈ ℝ* )
15 9 sseli ( 𝑥 ∈ ( 1 [,) +∞ ) → 𝑥 ∈ ℝ )
16 15 adantr ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 𝑥 ∈ ℝ )
17 9 sseli ( 𝑦 ∈ ( 1 [,) +∞ ) → 𝑦 ∈ ℝ )
18 17 adantl ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 𝑦 ∈ ℝ )
19 16 18 remulcld ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ )
20 19 rexrd ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ* )
21 1t1e1 ( 1 · 1 ) = 1
22 7 a1i ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ∈ ℝ )
23 0le1 0 ≤ 1
24 23 a1i ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 0 ≤ 1 )
25 icogelb ( ( 1 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑥 )
26 5 6 25 mp3an12 ( 𝑥 ∈ ( 1 [,) +∞ ) → 1 ≤ 𝑥 )
27 26 adantr ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑥 )
28 icogelb ( ( 1 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑦 )
29 5 6 28 mp3an12 ( 𝑦 ∈ ( 1 [,) +∞ ) → 1 ≤ 𝑦 )
30 29 adantl ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑦 )
31 22 16 22 18 24 24 27 30 lemul12ad ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 1 · 1 ) ≤ ( 𝑥 · 𝑦 ) )
32 21 31 eqbrtrrid ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ≤ ( 𝑥 · 𝑦 ) )
33 19 ltpnfd ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) < +∞ )
34 13 14 20 32 33 elicod ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ( 1 [,) +∞ ) )
35 34 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) ) → ( 𝑥 · 𝑦 ) ∈ ( 1 [,) +∞ ) )
36 5 a1i ( ( 𝜑𝑘𝐴 ) → 1 ∈ ℝ* )
37 6 a1i ( ( 𝜑𝑘𝐴 ) → +∞ ∈ ℝ* )
38 3 rexrd ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ* )
39 3 ltpnfd ( ( 𝜑𝑘𝐴 ) → 𝐵 < +∞ )
40 36 37 38 4 39 elicod ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 1 [,) +∞ ) )
41 1le1 1 ≤ 1
42 ltpnf ( 1 ∈ ℝ → 1 < +∞ )
43 7 42 ax-mp 1 < +∞
44 elico2 ( ( 1 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 1 ∈ ( 1 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞ ) ) )
45 7 6 44 mp2an ( 1 ∈ ( 1 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞ ) )
46 7 41 43 45 mpbir3an 1 ∈ ( 1 [,) +∞ )
47 46 a1i ( 𝜑 → 1 ∈ ( 1 [,) +∞ ) )
48 1 12 35 2 40 47 fprodcllemf ( 𝜑 → ∏ 𝑘𝐴 𝐵 ∈ ( 1 [,) +∞ ) )
49 icogelb ( ( 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏ 𝑘𝐴 𝐵 ∈ ( 1 [,) +∞ ) ) → 1 ≤ ∏ 𝑘𝐴 𝐵 )
50 5 6 48 49 mp3an12i ( 𝜑 → 1 ≤ ∏ 𝑘𝐴 𝐵 )