Step |
Hyp |
Ref |
Expression |
1 |
|
fprodge1.ph |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
fprodge1.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
fprodge1.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
4 |
|
fprodge1.ge |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 1 ≤ 𝐵 ) |
5 |
|
1xr |
⊢ 1 ∈ ℝ* |
6 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
7 |
|
1re |
⊢ 1 ∈ ℝ |
8 |
|
icossre |
⊢ ( ( 1 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 1 [,) +∞ ) ⊆ ℝ ) |
9 |
7 6 8
|
mp2an |
⊢ ( 1 [,) +∞ ) ⊆ ℝ |
10 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
11 |
9 10
|
sstri |
⊢ ( 1 [,) +∞ ) ⊆ ℂ |
12 |
11
|
a1i |
⊢ ( 𝜑 → ( 1 [,) +∞ ) ⊆ ℂ ) |
13 |
5
|
a1i |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ∈ ℝ* ) |
14 |
6
|
a1i |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → +∞ ∈ ℝ* ) |
15 |
9
|
sseli |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 𝑥 ∈ ℝ ) |
16 |
15
|
adantr |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 𝑥 ∈ ℝ ) |
17 |
9
|
sseli |
⊢ ( 𝑦 ∈ ( 1 [,) +∞ ) → 𝑦 ∈ ℝ ) |
18 |
17
|
adantl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 𝑦 ∈ ℝ ) |
19 |
16 18
|
remulcld |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ ) |
20 |
19
|
rexrd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ* ) |
21 |
|
1t1e1 |
⊢ ( 1 · 1 ) = 1 |
22 |
7
|
a1i |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ∈ ℝ ) |
23 |
|
0le1 |
⊢ 0 ≤ 1 |
24 |
23
|
a1i |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 0 ≤ 1 ) |
25 |
|
icogelb |
⊢ ( ( 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑥 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑥 ) |
26 |
5 6 25
|
mp3an12 |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) → 1 ≤ 𝑥 ) |
27 |
26
|
adantr |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑥 ) |
28 |
|
icogelb |
⊢ ( ( 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑦 ) |
29 |
5 6 28
|
mp3an12 |
⊢ ( 𝑦 ∈ ( 1 [,) +∞ ) → 1 ≤ 𝑦 ) |
30 |
29
|
adantl |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ≤ 𝑦 ) |
31 |
22 16 22 18 24 24 27 30
|
lemul12ad |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 1 · 1 ) ≤ ( 𝑥 · 𝑦 ) ) |
32 |
21 31
|
eqbrtrrid |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → 1 ≤ ( 𝑥 · 𝑦 ) ) |
33 |
19
|
ltpnfd |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) < +∞ ) |
34 |
13 14 20 32 33
|
elicod |
⊢ ( ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) → ( 𝑥 · 𝑦 ) ∈ ( 1 [,) +∞ ) ) |
35 |
34
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( 1 [,) +∞ ) ∧ 𝑦 ∈ ( 1 [,) +∞ ) ) ) → ( 𝑥 · 𝑦 ) ∈ ( 1 [,) +∞ ) ) |
36 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 1 ∈ ℝ* ) |
37 |
6
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → +∞ ∈ ℝ* ) |
38 |
3
|
rexrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
39 |
3
|
ltpnfd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 < +∞ ) |
40 |
36 37 38 4 39
|
elicod |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 1 [,) +∞ ) ) |
41 |
|
1le1 |
⊢ 1 ≤ 1 |
42 |
|
ltpnf |
⊢ ( 1 ∈ ℝ → 1 < +∞ ) |
43 |
7 42
|
ax-mp |
⊢ 1 < +∞ |
44 |
|
elico2 |
⊢ ( ( 1 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( 1 ∈ ( 1 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞ ) ) ) |
45 |
7 6 44
|
mp2an |
⊢ ( 1 ∈ ( 1 [,) +∞ ) ↔ ( 1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞ ) ) |
46 |
7 41 43 45
|
mpbir3an |
⊢ 1 ∈ ( 1 [,) +∞ ) |
47 |
46
|
a1i |
⊢ ( 𝜑 → 1 ∈ ( 1 [,) +∞ ) ) |
48 |
1 12 35 2 40 47
|
fprodcllemf |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ( 1 [,) +∞ ) ) |
49 |
|
icogelb |
⊢ ( ( 1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ( 1 [,) +∞ ) ) → 1 ≤ ∏ 𝑘 ∈ 𝐴 𝐵 ) |
50 |
5 6 48 49
|
mp3an12i |
⊢ ( 𝜑 → 1 ≤ ∏ 𝑘 ∈ 𝐴 𝐵 ) |