| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodge1.ph | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | fprodge1.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 3 |  | fprodge1.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | fprodge1.ge | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  1  ≤  𝐵 ) | 
						
							| 5 |  | 1xr | ⊢ 1  ∈  ℝ* | 
						
							| 6 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 7 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 8 |  | icossre | ⊢ ( ( 1  ∈  ℝ  ∧  +∞  ∈  ℝ* )  →  ( 1 [,) +∞ )  ⊆  ℝ ) | 
						
							| 9 | 7 6 8 | mp2an | ⊢ ( 1 [,) +∞ )  ⊆  ℝ | 
						
							| 10 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 11 | 9 10 | sstri | ⊢ ( 1 [,) +∞ )  ⊆  ℂ | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  ( 1 [,) +∞ )  ⊆  ℂ ) | 
						
							| 13 | 5 | a1i | ⊢ ( ( 𝑥  ∈  ( 1 [,) +∞ )  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  1  ∈  ℝ* ) | 
						
							| 14 | 6 | a1i | ⊢ ( ( 𝑥  ∈  ( 1 [,) +∞ )  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  +∞  ∈  ℝ* ) | 
						
							| 15 | 9 | sseli | ⊢ ( 𝑥  ∈  ( 1 [,) +∞ )  →  𝑥  ∈  ℝ ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝑥  ∈  ( 1 [,) +∞ )  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  𝑥  ∈  ℝ ) | 
						
							| 17 | 9 | sseli | ⊢ ( 𝑦  ∈  ( 1 [,) +∞ )  →  𝑦  ∈  ℝ ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝑥  ∈  ( 1 [,) +∞ )  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  𝑦  ∈  ℝ ) | 
						
							| 19 | 16 18 | remulcld | ⊢ ( ( 𝑥  ∈  ( 1 [,) +∞ )  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℝ ) | 
						
							| 20 | 19 | rexrd | ⊢ ( ( 𝑥  ∈  ( 1 [,) +∞ )  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℝ* ) | 
						
							| 21 |  | 1t1e1 | ⊢ ( 1  ·  1 )  =  1 | 
						
							| 22 | 7 | a1i | ⊢ ( ( 𝑥  ∈  ( 1 [,) +∞ )  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  1  ∈  ℝ ) | 
						
							| 23 |  | 0le1 | ⊢ 0  ≤  1 | 
						
							| 24 | 23 | a1i | ⊢ ( ( 𝑥  ∈  ( 1 [,) +∞ )  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  0  ≤  1 ) | 
						
							| 25 |  | icogelb | ⊢ ( ( 1  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  𝑥  ∈  ( 1 [,) +∞ ) )  →  1  ≤  𝑥 ) | 
						
							| 26 | 5 6 25 | mp3an12 | ⊢ ( 𝑥  ∈  ( 1 [,) +∞ )  →  1  ≤  𝑥 ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝑥  ∈  ( 1 [,) +∞ )  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  1  ≤  𝑥 ) | 
						
							| 28 |  | icogelb | ⊢ ( ( 1  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  1  ≤  𝑦 ) | 
						
							| 29 | 5 6 28 | mp3an12 | ⊢ ( 𝑦  ∈  ( 1 [,) +∞ )  →  1  ≤  𝑦 ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( 𝑥  ∈  ( 1 [,) +∞ )  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  1  ≤  𝑦 ) | 
						
							| 31 | 22 16 22 18 24 24 27 30 | lemul12ad | ⊢ ( ( 𝑥  ∈  ( 1 [,) +∞ )  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  ( 1  ·  1 )  ≤  ( 𝑥  ·  𝑦 ) ) | 
						
							| 32 | 21 31 | eqbrtrrid | ⊢ ( ( 𝑥  ∈  ( 1 [,) +∞ )  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  1  ≤  ( 𝑥  ·  𝑦 ) ) | 
						
							| 33 | 19 | ltpnfd | ⊢ ( ( 𝑥  ∈  ( 1 [,) +∞ )  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  ( 𝑥  ·  𝑦 )  <  +∞ ) | 
						
							| 34 | 13 14 20 32 33 | elicod | ⊢ ( ( 𝑥  ∈  ( 1 [,) +∞ )  ∧  𝑦  ∈  ( 1 [,) +∞ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ( 1 [,) +∞ ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 [,) +∞ )  ∧  𝑦  ∈  ( 1 [,) +∞ ) ) )  →  ( 𝑥  ·  𝑦 )  ∈  ( 1 [,) +∞ ) ) | 
						
							| 36 | 5 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  1  ∈  ℝ* ) | 
						
							| 37 | 6 | a1i | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  +∞  ∈  ℝ* ) | 
						
							| 38 | 3 | rexrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℝ* ) | 
						
							| 39 | 3 | ltpnfd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  <  +∞ ) | 
						
							| 40 | 36 37 38 4 39 | elicod | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ( 1 [,) +∞ ) ) | 
						
							| 41 |  | 1le1 | ⊢ 1  ≤  1 | 
						
							| 42 |  | ltpnf | ⊢ ( 1  ∈  ℝ  →  1  <  +∞ ) | 
						
							| 43 | 7 42 | ax-mp | ⊢ 1  <  +∞ | 
						
							| 44 |  | elico2 | ⊢ ( ( 1  ∈  ℝ  ∧  +∞  ∈  ℝ* )  →  ( 1  ∈  ( 1 [,) +∞ )  ↔  ( 1  ∈  ℝ  ∧  1  ≤  1  ∧  1  <  +∞ ) ) ) | 
						
							| 45 | 7 6 44 | mp2an | ⊢ ( 1  ∈  ( 1 [,) +∞ )  ↔  ( 1  ∈  ℝ  ∧  1  ≤  1  ∧  1  <  +∞ ) ) | 
						
							| 46 | 7 41 43 45 | mpbir3an | ⊢ 1  ∈  ( 1 [,) +∞ ) | 
						
							| 47 | 46 | a1i | ⊢ ( 𝜑  →  1  ∈  ( 1 [,) +∞ ) ) | 
						
							| 48 | 1 12 35 2 40 47 | fprodcllemf | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 𝐵  ∈  ( 1 [,) +∞ ) ) | 
						
							| 49 |  | icogelb | ⊢ ( ( 1  ∈  ℝ*  ∧  +∞  ∈  ℝ*  ∧  ∏ 𝑘  ∈  𝐴 𝐵  ∈  ( 1 [,) +∞ ) )  →  1  ≤  ∏ 𝑘  ∈  𝐴 𝐵 ) | 
						
							| 50 | 5 6 48 49 | mp3an12i | ⊢ ( 𝜑  →  1  ≤  ∏ 𝑘  ∈  𝐴 𝐵 ) |