Step |
Hyp |
Ref |
Expression |
1 |
|
fprodle.kph |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
fprodle.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
3 |
|
fprodle.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
4 |
|
fprodle.0l3b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
5 |
|
fprodle.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
6 |
|
fprodle.blec |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) |
7 |
|
1red |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → 1 ∈ ℝ ) |
8 |
|
nfra1 |
⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 |
9 |
1 8
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |
10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → 𝐴 ∈ Fin ) |
11 |
5
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
12 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) |
13 |
|
rspa |
⊢ ( ( ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≠ 0 ) |
14 |
13
|
adantll |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≠ 0 ) |
15 |
11 12 14
|
redivcld |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → ( 𝐶 / 𝐵 ) ∈ ℝ ) |
16 |
9 10 15
|
fprodreclf |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 ( 𝐶 / 𝐵 ) ∈ ℝ ) |
17 |
1 2 3
|
fprodreclf |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ ) |
19 |
1 2 3 4
|
fprodge0 |
⊢ ( 𝜑 → 0 ≤ ∏ 𝑘 ∈ 𝐴 𝐵 ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → 0 ≤ ∏ 𝑘 ∈ 𝐴 𝐵 ) |
21 |
4
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐵 ) |
22 |
12 21 14
|
ne0gt0d |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 0 < 𝐵 ) |
23 |
12 22
|
elrpd |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ+ ) |
24 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≤ 𝐶 ) |
25 |
|
divge1 |
⊢ ( ( 𝐵 ∈ ℝ+ ∧ 𝐶 ∈ ℝ ∧ 𝐵 ≤ 𝐶 ) → 1 ≤ ( 𝐶 / 𝐵 ) ) |
26 |
23 11 24 25
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 1 ≤ ( 𝐶 / 𝐵 ) ) |
27 |
9 10 15 26
|
fprodge1 |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → 1 ≤ ∏ 𝑘 ∈ 𝐴 ( 𝐶 / 𝐵 ) ) |
28 |
7 16 18 20 27
|
lemul2ad |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ( ∏ 𝑘 ∈ 𝐴 𝐵 · 1 ) ≤ ( ∏ 𝑘 ∈ 𝐴 𝐵 · ∏ 𝑘 ∈ 𝐴 ( 𝐶 / 𝐵 ) ) ) |
29 |
3
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
30 |
1 2 29
|
fprodclf |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
31 |
30
|
mulid1d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ 𝐴 𝐵 · 1 ) = ∏ 𝑘 ∈ 𝐴 𝐵 ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ( ∏ 𝑘 ∈ 𝐴 𝐵 · 1 ) = ∏ 𝑘 ∈ 𝐴 𝐵 ) |
33 |
5
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
34 |
33
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
35 |
29
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
36 |
9 10 34 35 14
|
fproddivf |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 ( 𝐶 / 𝐵 ) = ( ∏ 𝑘 ∈ 𝐴 𝐶 / ∏ 𝑘 ∈ 𝐴 𝐵 ) ) |
37 |
36
|
oveq2d |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ( ∏ 𝑘 ∈ 𝐴 𝐵 · ∏ 𝑘 ∈ 𝐴 ( 𝐶 / 𝐵 ) ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 · ( ∏ 𝑘 ∈ 𝐴 𝐶 / ∏ 𝑘 ∈ 𝐴 𝐵 ) ) ) |
38 |
1 2 33
|
fprodclf |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) |
39 |
38
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 𝐶 ∈ ℂ ) |
40 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℂ ) |
41 |
9 10 35 14
|
fprodn0f |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |
42 |
39 40 41
|
divcan2d |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ( ∏ 𝑘 ∈ 𝐴 𝐵 · ( ∏ 𝑘 ∈ 𝐴 𝐶 / ∏ 𝑘 ∈ 𝐴 𝐵 ) ) = ∏ 𝑘 ∈ 𝐴 𝐶 ) |
43 |
37 42
|
eqtrd |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ( ∏ 𝑘 ∈ 𝐴 𝐵 · ∏ 𝑘 ∈ 𝐴 ( 𝐶 / 𝐵 ) ) = ∏ 𝑘 ∈ 𝐴 𝐶 ) |
44 |
28 32 43
|
3brtr3d |
⊢ ( ( 𝜑 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |
45 |
|
nne |
⊢ ( ¬ 𝐵 ≠ 0 ↔ 𝐵 = 0 ) |
46 |
45
|
rexbii |
⊢ ( ∃ 𝑘 ∈ 𝐴 ¬ 𝐵 ≠ 0 ↔ ∃ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
47 |
|
rexnal |
⊢ ( ∃ 𝑘 ∈ 𝐴 ¬ 𝐵 ≠ 0 ↔ ¬ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |
48 |
|
nfv |
⊢ Ⅎ 𝑗 𝐵 = 0 |
49 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 |
50 |
49
|
nfeq1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 |
51 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐵 = ⦋ 𝑗 / 𝑘 ⦌ 𝐵 ) |
52 |
51
|
eqeq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐵 = 0 ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) ) |
53 |
48 50 52
|
cbvrexw |
⊢ ( ∃ 𝑘 ∈ 𝐴 𝐵 = 0 ↔ ∃ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) |
54 |
46 47 53
|
3bitr3i |
⊢ ( ¬ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ↔ ∃ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) |
55 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝐴 |
56 |
1 55 50
|
nf3an |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) |
57 |
2
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) → 𝐴 ∈ Fin ) |
58 |
29
|
3ad2antl1 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
59 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) → 𝑗 ∈ 𝐴 ) |
60 |
52
|
biimparc |
⊢ ( ( ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ∧ 𝑘 = 𝑗 ) → 𝐵 = 0 ) |
61 |
60
|
3ad2antl3 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) ∧ 𝑘 = 𝑗 ) → 𝐵 = 0 ) |
62 |
56 57 58 59 61
|
fprodeq0g |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
63 |
62
|
rexlimdv3a |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 → ∏ 𝑘 ∈ 𝐴 𝐵 = 0 ) ) |
64 |
63
|
imp |
⊢ ( ( 𝜑 ∧ ∃ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 = 0 ) |
65 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ∈ ℝ ) |
66 |
65 3 5 4 6
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 0 ≤ 𝐶 ) |
67 |
1 2 5 66
|
fprodge0 |
⊢ ( 𝜑 → 0 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |
68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ ∃ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) → 0 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |
69 |
64 68
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ ∃ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐵 = 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |
70 |
54 69
|
sylan2b |
⊢ ( ( 𝜑 ∧ ¬ ∀ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |
71 |
44 70
|
pm2.61dan |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ≤ ∏ 𝑘 ∈ 𝐴 𝐶 ) |