| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodle.kph | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | fprodle.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 3 |  | fprodle.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 4 |  | fprodle.0l3b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  0  ≤  𝐵 ) | 
						
							| 5 |  | fprodle.c | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐶  ∈  ℝ ) | 
						
							| 6 |  | fprodle.blec | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ≤  𝐶 ) | 
						
							| 7 |  | 1red | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  →  1  ∈  ℝ ) | 
						
							| 8 |  | nfra1 | ⊢ Ⅎ 𝑘 ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 | 
						
							| 9 | 1 8 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 ) | 
						
							| 10 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  →  𝐴  ∈  Fin ) | 
						
							| 11 | 5 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  ∧  𝑘  ∈  𝐴 )  →  𝐶  ∈  ℝ ) | 
						
							| 12 | 3 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℝ ) | 
						
							| 13 |  | rspa | ⊢ ( ( ∀ 𝑘  ∈  𝐴 𝐵  ≠  0  ∧  𝑘  ∈  𝐴 )  →  𝐵  ≠  0 ) | 
						
							| 14 | 13 | adantll | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  ∧  𝑘  ∈  𝐴 )  →  𝐵  ≠  0 ) | 
						
							| 15 | 11 12 14 | redivcld | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  ∧  𝑘  ∈  𝐴 )  →  ( 𝐶  /  𝐵 )  ∈  ℝ ) | 
						
							| 16 | 9 10 15 | fprodreclf | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  →  ∏ 𝑘  ∈  𝐴 ( 𝐶  /  𝐵 )  ∈  ℝ ) | 
						
							| 17 | 1 2 3 | fprodreclf | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 𝐵  ∈  ℝ ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  →  ∏ 𝑘  ∈  𝐴 𝐵  ∈  ℝ ) | 
						
							| 19 | 1 2 3 4 | fprodge0 | ⊢ ( 𝜑  →  0  ≤  ∏ 𝑘  ∈  𝐴 𝐵 ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  →  0  ≤  ∏ 𝑘  ∈  𝐴 𝐵 ) | 
						
							| 21 | 4 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  ∧  𝑘  ∈  𝐴 )  →  0  ≤  𝐵 ) | 
						
							| 22 | 12 21 14 | ne0gt0d | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  ∧  𝑘  ∈  𝐴 )  →  0  <  𝐵 ) | 
						
							| 23 | 12 22 | elrpd | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℝ+ ) | 
						
							| 24 | 6 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  ∧  𝑘  ∈  𝐴 )  →  𝐵  ≤  𝐶 ) | 
						
							| 25 |  | divge1 | ⊢ ( ( 𝐵  ∈  ℝ+  ∧  𝐶  ∈  ℝ  ∧  𝐵  ≤  𝐶 )  →  1  ≤  ( 𝐶  /  𝐵 ) ) | 
						
							| 26 | 23 11 24 25 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  ∧  𝑘  ∈  𝐴 )  →  1  ≤  ( 𝐶  /  𝐵 ) ) | 
						
							| 27 | 9 10 15 26 | fprodge1 | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  →  1  ≤  ∏ 𝑘  ∈  𝐴 ( 𝐶  /  𝐵 ) ) | 
						
							| 28 | 7 16 18 20 27 | lemul2ad | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  →  ( ∏ 𝑘  ∈  𝐴 𝐵  ·  1 )  ≤  ( ∏ 𝑘  ∈  𝐴 𝐵  ·  ∏ 𝑘  ∈  𝐴 ( 𝐶  /  𝐵 ) ) ) | 
						
							| 29 | 3 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 30 | 1 2 29 | fprodclf | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 𝐵  ∈  ℂ ) | 
						
							| 31 | 30 | mulridd | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  𝐴 𝐵  ·  1 )  =  ∏ 𝑘  ∈  𝐴 𝐵 ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  →  ( ∏ 𝑘  ∈  𝐴 𝐵  ·  1 )  =  ∏ 𝑘  ∈  𝐴 𝐵 ) | 
						
							| 33 | 5 | recnd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐶  ∈  ℂ ) | 
						
							| 34 | 33 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  ∧  𝑘  ∈  𝐴 )  →  𝐶  ∈  ℂ ) | 
						
							| 35 | 29 | adantlr | ⊢ ( ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 36 | 9 10 34 35 14 | fproddivf | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  →  ∏ 𝑘  ∈  𝐴 ( 𝐶  /  𝐵 )  =  ( ∏ 𝑘  ∈  𝐴 𝐶  /  ∏ 𝑘  ∈  𝐴 𝐵 ) ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  →  ( ∏ 𝑘  ∈  𝐴 𝐵  ·  ∏ 𝑘  ∈  𝐴 ( 𝐶  /  𝐵 ) )  =  ( ∏ 𝑘  ∈  𝐴 𝐵  ·  ( ∏ 𝑘  ∈  𝐴 𝐶  /  ∏ 𝑘  ∈  𝐴 𝐵 ) ) ) | 
						
							| 38 | 1 2 33 | fprodclf | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 𝐶  ∈  ℂ ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  →  ∏ 𝑘  ∈  𝐴 𝐶  ∈  ℂ ) | 
						
							| 40 | 30 | adantr | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  →  ∏ 𝑘  ∈  𝐴 𝐵  ∈  ℂ ) | 
						
							| 41 | 9 10 35 14 | fprodn0f | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  →  ∏ 𝑘  ∈  𝐴 𝐵  ≠  0 ) | 
						
							| 42 | 39 40 41 | divcan2d | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  →  ( ∏ 𝑘  ∈  𝐴 𝐵  ·  ( ∏ 𝑘  ∈  𝐴 𝐶  /  ∏ 𝑘  ∈  𝐴 𝐵 ) )  =  ∏ 𝑘  ∈  𝐴 𝐶 ) | 
						
							| 43 | 37 42 | eqtrd | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  →  ( ∏ 𝑘  ∈  𝐴 𝐵  ·  ∏ 𝑘  ∈  𝐴 ( 𝐶  /  𝐵 ) )  =  ∏ 𝑘  ∈  𝐴 𝐶 ) | 
						
							| 44 | 28 32 43 | 3brtr3d | ⊢ ( ( 𝜑  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  →  ∏ 𝑘  ∈  𝐴 𝐵  ≤  ∏ 𝑘  ∈  𝐴 𝐶 ) | 
						
							| 45 |  | nne | ⊢ ( ¬  𝐵  ≠  0  ↔  𝐵  =  0 ) | 
						
							| 46 | 45 | rexbii | ⊢ ( ∃ 𝑘  ∈  𝐴 ¬  𝐵  ≠  0  ↔  ∃ 𝑘  ∈  𝐴 𝐵  =  0 ) | 
						
							| 47 |  | rexnal | ⊢ ( ∃ 𝑘  ∈  𝐴 ¬  𝐵  ≠  0  ↔  ¬  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 ) | 
						
							| 48 |  | nfv | ⊢ Ⅎ 𝑗 𝐵  =  0 | 
						
							| 49 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵 | 
						
							| 50 | 49 | nfeq1 | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  0 | 
						
							| 51 |  | csbeq1a | ⊢ ( 𝑘  =  𝑗  →  𝐵  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐵 ) | 
						
							| 52 | 51 | eqeq1d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐵  =  0  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  0 ) ) | 
						
							| 53 | 48 50 52 | cbvrexw | ⊢ ( ∃ 𝑘  ∈  𝐴 𝐵  =  0  ↔  ∃ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  0 ) | 
						
							| 54 | 46 47 53 | 3bitr3i | ⊢ ( ¬  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0  ↔  ∃ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  0 ) | 
						
							| 55 |  | nfv | ⊢ Ⅎ 𝑘 𝑗  ∈  𝐴 | 
						
							| 56 | 1 55 50 | nf3an | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑗  ∈  𝐴  ∧  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  0 ) | 
						
							| 57 | 2 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴  ∧  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  0 )  →  𝐴  ∈  Fin ) | 
						
							| 58 | 29 | 3ad2antl1 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝐴  ∧  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  0 )  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 59 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴  ∧  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  0 )  →  𝑗  ∈  𝐴 ) | 
						
							| 60 | 52 | biimparc | ⊢ ( ( ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  0  ∧  𝑘  =  𝑗 )  →  𝐵  =  0 ) | 
						
							| 61 | 60 | 3ad2antl3 | ⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝐴  ∧  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  0 )  ∧  𝑘  =  𝑗 )  →  𝐵  =  0 ) | 
						
							| 62 | 56 57 58 59 61 | fprodeq0g | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝐴  ∧  ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  0 )  →  ∏ 𝑘  ∈  𝐴 𝐵  =  0 ) | 
						
							| 63 | 62 | rexlimdv3a | ⊢ ( 𝜑  →  ( ∃ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  0  →  ∏ 𝑘  ∈  𝐴 𝐵  =  0 ) ) | 
						
							| 64 | 63 | imp | ⊢ ( ( 𝜑  ∧  ∃ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  0 )  →  ∏ 𝑘  ∈  𝐴 𝐵  =  0 ) | 
						
							| 65 |  | 0red | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  0  ∈  ℝ ) | 
						
							| 66 | 65 3 5 4 6 | letrd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  0  ≤  𝐶 ) | 
						
							| 67 | 1 2 5 66 | fprodge0 | ⊢ ( 𝜑  →  0  ≤  ∏ 𝑘  ∈  𝐴 𝐶 ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( 𝜑  ∧  ∃ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  0 )  →  0  ≤  ∏ 𝑘  ∈  𝐴 𝐶 ) | 
						
							| 69 | 64 68 | eqbrtrd | ⊢ ( ( 𝜑  ∧  ∃ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐵  =  0 )  →  ∏ 𝑘  ∈  𝐴 𝐵  ≤  ∏ 𝑘  ∈  𝐴 𝐶 ) | 
						
							| 70 | 54 69 | sylan2b | ⊢ ( ( 𝜑  ∧  ¬  ∀ 𝑘  ∈  𝐴 𝐵  ≠  0 )  →  ∏ 𝑘  ∈  𝐴 𝐵  ≤  ∏ 𝑘  ∈  𝐴 𝐶 ) | 
						
							| 71 | 44 70 | pm2.61dan | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 𝐵  ≤  ∏ 𝑘  ∈  𝐴 𝐶 ) |