| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodmodd.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | fprodmodd.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℤ ) | 
						
							| 3 |  | fprodmodd.c | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐶  ∈  ℤ ) | 
						
							| 4 |  | fprodmodd.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 5 |  | fprodmodd.p | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝐵  mod  𝑀 )  =  ( 𝐶  mod  𝑀 ) ) | 
						
							| 6 |  | prodeq1 | ⊢ ( 𝑥  =  ∅  →  ∏ 𝑘  ∈  𝑥 𝐵  =  ∏ 𝑘  ∈  ∅ 𝐵 ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( 𝑥  =  ∅  →  ( ∏ 𝑘  ∈  𝑥 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  ∅ 𝐵  mod  𝑀 ) ) | 
						
							| 8 |  | prodeq1 | ⊢ ( 𝑥  =  ∅  →  ∏ 𝑘  ∈  𝑥 𝐶  =  ∏ 𝑘  ∈  ∅ 𝐶 ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝑥  =  ∅  →  ( ∏ 𝑘  ∈  𝑥 𝐶  mod  𝑀 )  =  ( ∏ 𝑘  ∈  ∅ 𝐶  mod  𝑀 ) ) | 
						
							| 10 | 7 9 | eqeq12d | ⊢ ( 𝑥  =  ∅  →  ( ( ∏ 𝑘  ∈  𝑥 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑥 𝐶  mod  𝑀 )  ↔  ( ∏ 𝑘  ∈  ∅ 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  ∅ 𝐶  mod  𝑀 ) ) ) | 
						
							| 11 |  | prodeq1 | ⊢ ( 𝑥  =  𝑦  →  ∏ 𝑘  ∈  𝑥 𝐵  =  ∏ 𝑘  ∈  𝑦 𝐵 ) | 
						
							| 12 | 11 | oveq1d | ⊢ ( 𝑥  =  𝑦  →  ( ∏ 𝑘  ∈  𝑥 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑦 𝐵  mod  𝑀 ) ) | 
						
							| 13 |  | prodeq1 | ⊢ ( 𝑥  =  𝑦  →  ∏ 𝑘  ∈  𝑥 𝐶  =  ∏ 𝑘  ∈  𝑦 𝐶 ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( 𝑥  =  𝑦  →  ( ∏ 𝑘  ∈  𝑥 𝐶  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑦 𝐶  mod  𝑀 ) ) | 
						
							| 15 | 12 14 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( ∏ 𝑘  ∈  𝑥 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑥 𝐶  mod  𝑀 )  ↔  ( ∏ 𝑘  ∈  𝑦 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑦 𝐶  mod  𝑀 ) ) ) | 
						
							| 16 |  | prodeq1 | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑖 } )  →  ∏ 𝑘  ∈  𝑥 𝐵  =  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑖 } ) 𝐵 ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑖 } )  →  ( ∏ 𝑘  ∈  𝑥 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑖 } ) 𝐵  mod  𝑀 ) ) | 
						
							| 18 |  | prodeq1 | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑖 } )  →  ∏ 𝑘  ∈  𝑥 𝐶  =  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑖 } ) 𝐶 ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑖 } )  →  ( ∏ 𝑘  ∈  𝑥 𝐶  mod  𝑀 )  =  ( ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑖 } ) 𝐶  mod  𝑀 ) ) | 
						
							| 20 | 17 19 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑦  ∪  { 𝑖 } )  →  ( ( ∏ 𝑘  ∈  𝑥 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑥 𝐶  mod  𝑀 )  ↔  ( ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑖 } ) 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑖 } ) 𝐶  mod  𝑀 ) ) ) | 
						
							| 21 |  | prodeq1 | ⊢ ( 𝑥  =  𝐴  →  ∏ 𝑘  ∈  𝑥 𝐵  =  ∏ 𝑘  ∈  𝐴 𝐵 ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ∏ 𝑘  ∈  𝑥 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝐴 𝐵  mod  𝑀 ) ) | 
						
							| 23 |  | prodeq1 | ⊢ ( 𝑥  =  𝐴  →  ∏ 𝑘  ∈  𝑥 𝐶  =  ∏ 𝑘  ∈  𝐴 𝐶 ) | 
						
							| 24 | 23 | oveq1d | ⊢ ( 𝑥  =  𝐴  →  ( ∏ 𝑘  ∈  𝑥 𝐶  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝐴 𝐶  mod  𝑀 ) ) | 
						
							| 25 | 22 24 | eqeq12d | ⊢ ( 𝑥  =  𝐴  →  ( ( ∏ 𝑘  ∈  𝑥 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑥 𝐶  mod  𝑀 )  ↔  ( ∏ 𝑘  ∈  𝐴 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝐴 𝐶  mod  𝑀 ) ) ) | 
						
							| 26 |  | prod0 | ⊢ ∏ 𝑘  ∈  ∅ 𝐵  =  1 | 
						
							| 27 | 26 | a1i | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ∅ 𝐵  =  1 ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ∅ 𝐵  mod  𝑀 )  =  ( 1  mod  𝑀 ) ) | 
						
							| 29 |  | prod0 | ⊢ ∏ 𝑘  ∈  ∅ 𝐶  =  1 | 
						
							| 30 | 29 | eqcomi | ⊢ 1  =  ∏ 𝑘  ∈  ∅ 𝐶 | 
						
							| 31 | 30 | oveq1i | ⊢ ( 1  mod  𝑀 )  =  ( ∏ 𝑘  ∈  ∅ 𝐶  mod  𝑀 ) | 
						
							| 32 | 28 31 | eqtrdi | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ∅ 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  ∅ 𝐶  mod  𝑀 ) ) | 
						
							| 33 |  | nfv | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) ) | 
						
							| 34 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑖  /  𝑘 ⦌ 𝐵 | 
						
							| 35 |  | ssfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑦  ⊆  𝐴 )  →  𝑦  ∈  Fin ) | 
						
							| 36 | 35 | ex | ⊢ ( 𝐴  ∈  Fin  →  ( 𝑦  ⊆  𝐴  →  𝑦  ∈  Fin ) ) | 
						
							| 37 | 36 1 | syl11 | ⊢ ( 𝑦  ⊆  𝐴  →  ( 𝜑  →  𝑦  ∈  Fin ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) )  →  ( 𝜑  →  𝑦  ∈  Fin ) ) | 
						
							| 39 | 38 | impcom | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  𝑦  ∈  Fin ) | 
						
							| 40 |  | simpr | ⊢ ( ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) )  →  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) | 
						
							| 41 | 40 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) | 
						
							| 42 |  | eldifn | ⊢ ( 𝑖  ∈  ( 𝐴  ∖  𝑦 )  →  ¬  𝑖  ∈  𝑦 ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) )  →  ¬  𝑖  ∈  𝑦 ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ¬  𝑖  ∈  𝑦 ) | 
						
							| 45 |  | simpll | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  𝑦 )  →  𝜑 ) | 
						
							| 46 |  | ssel | ⊢ ( 𝑦  ⊆  𝐴  →  ( 𝑘  ∈  𝑦  →  𝑘  ∈  𝐴 ) ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) )  →  ( 𝑘  ∈  𝑦  →  𝑘  ∈  𝐴 ) ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( 𝑘  ∈  𝑦  →  𝑘  ∈  𝐴 ) ) | 
						
							| 49 | 48 | imp | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  𝑦 )  →  𝑘  ∈  𝐴 ) | 
						
							| 50 | 45 49 2 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  𝑦 )  →  𝐵  ∈  ℤ ) | 
						
							| 51 | 50 | zcnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  𝑦 )  →  𝐵  ∈  ℂ ) | 
						
							| 52 |  | csbeq1a | ⊢ ( 𝑘  =  𝑖  →  𝐵  =  ⦋ 𝑖  /  𝑘 ⦌ 𝐵 ) | 
						
							| 53 |  | eldifi | ⊢ ( 𝑖  ∈  ( 𝐴  ∖  𝑦 )  →  𝑖  ∈  𝐴 ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) )  →  𝑖  ∈  𝐴 ) | 
						
							| 55 | 2 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐴 𝐵  ∈  ℤ ) | 
						
							| 56 |  | rspcsbela | ⊢ ( ( 𝑖  ∈  𝐴  ∧  ∀ 𝑘  ∈  𝐴 𝐵  ∈  ℤ )  →  ⦋ 𝑖  /  𝑘 ⦌ 𝐵  ∈  ℤ ) | 
						
							| 57 | 54 55 56 | syl2anr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ⦋ 𝑖  /  𝑘 ⦌ 𝐵  ∈  ℤ ) | 
						
							| 58 | 57 | zcnd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ⦋ 𝑖  /  𝑘 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 59 | 33 34 39 41 44 51 52 58 | fprodsplitsn | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑖 } ) 𝐵  =  ( ∏ 𝑘  ∈  𝑦 𝐵  ·  ⦋ 𝑖  /  𝑘 ⦌ 𝐵 ) ) | 
						
							| 60 | 59 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑖 } ) 𝐵  mod  𝑀 )  =  ( ( ∏ 𝑘  ∈  𝑦 𝐵  ·  ⦋ 𝑖  /  𝑘 ⦌ 𝐵 )  mod  𝑀 ) ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( ∏ 𝑘  ∈  𝑦 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑦 𝐶  mod  𝑀 ) )  →  ( ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑖 } ) 𝐵  mod  𝑀 )  =  ( ( ∏ 𝑘  ∈  𝑦 𝐵  ·  ⦋ 𝑖  /  𝑘 ⦌ 𝐵 )  mod  𝑀 ) ) | 
						
							| 62 | 39 50 | fprodzcl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ∏ 𝑘  ∈  𝑦 𝐵  ∈  ℤ ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( ∏ 𝑘  ∈  𝑦 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑦 𝐶  mod  𝑀 ) )  →  ∏ 𝑘  ∈  𝑦 𝐵  ∈  ℤ ) | 
						
							| 64 | 45 49 3 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  𝑦 )  →  𝐶  ∈  ℤ ) | 
						
							| 65 | 39 64 | fprodzcl | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ∏ 𝑘  ∈  𝑦 𝐶  ∈  ℤ ) | 
						
							| 66 | 65 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( ∏ 𝑘  ∈  𝑦 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑦 𝐶  mod  𝑀 ) )  →  ∏ 𝑘  ∈  𝑦 𝐶  ∈  ℤ ) | 
						
							| 67 | 57 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( ∏ 𝑘  ∈  𝑦 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑦 𝐶  mod  𝑀 ) )  →  ⦋ 𝑖  /  𝑘 ⦌ 𝐵  ∈  ℤ ) | 
						
							| 68 | 3 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐴 𝐶  ∈  ℤ ) | 
						
							| 69 |  | rspcsbela | ⊢ ( ( 𝑖  ∈  𝐴  ∧  ∀ 𝑘  ∈  𝐴 𝐶  ∈  ℤ )  →  ⦋ 𝑖  /  𝑘 ⦌ 𝐶  ∈  ℤ ) | 
						
							| 70 | 54 68 69 | syl2anr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ⦋ 𝑖  /  𝑘 ⦌ 𝐶  ∈  ℤ ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( ∏ 𝑘  ∈  𝑦 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑦 𝐶  mod  𝑀 ) )  →  ⦋ 𝑖  /  𝑘 ⦌ 𝐶  ∈  ℤ ) | 
						
							| 72 | 4 | nnrpd | ⊢ ( 𝜑  →  𝑀  ∈  ℝ+ ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  𝑀  ∈  ℝ+ ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( ∏ 𝑘  ∈  𝑦 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑦 𝐶  mod  𝑀 ) )  →  𝑀  ∈  ℝ+ ) | 
						
							| 75 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( ∏ 𝑘  ∈  𝑦 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑦 𝐶  mod  𝑀 ) )  →  ( ∏ 𝑘  ∈  𝑦 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑦 𝐶  mod  𝑀 ) ) | 
						
							| 76 | 5 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  𝐴 ( 𝐵  mod  𝑀 )  =  ( 𝐶  mod  𝑀 ) ) | 
						
							| 77 |  | rspsbca | ⊢ ( ( 𝑖  ∈  𝐴  ∧  ∀ 𝑘  ∈  𝐴 ( 𝐵  mod  𝑀 )  =  ( 𝐶  mod  𝑀 ) )  →  [ 𝑖  /  𝑘 ] ( 𝐵  mod  𝑀 )  =  ( 𝐶  mod  𝑀 ) ) | 
						
							| 78 | 54 76 77 | syl2anr | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  [ 𝑖  /  𝑘 ] ( 𝐵  mod  𝑀 )  =  ( 𝐶  mod  𝑀 ) ) | 
						
							| 79 |  | vex | ⊢ 𝑖  ∈  V | 
						
							| 80 |  | sbceqg | ⊢ ( 𝑖  ∈  V  →  ( [ 𝑖  /  𝑘 ] ( 𝐵  mod  𝑀 )  =  ( 𝐶  mod  𝑀 )  ↔  ⦋ 𝑖  /  𝑘 ⦌ ( 𝐵  mod  𝑀 )  =  ⦋ 𝑖  /  𝑘 ⦌ ( 𝐶  mod  𝑀 ) ) ) | 
						
							| 81 | 79 80 | mp1i | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( [ 𝑖  /  𝑘 ] ( 𝐵  mod  𝑀 )  =  ( 𝐶  mod  𝑀 )  ↔  ⦋ 𝑖  /  𝑘 ⦌ ( 𝐵  mod  𝑀 )  =  ⦋ 𝑖  /  𝑘 ⦌ ( 𝐶  mod  𝑀 ) ) ) | 
						
							| 82 | 78 81 | mpbid | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ⦋ 𝑖  /  𝑘 ⦌ ( 𝐵  mod  𝑀 )  =  ⦋ 𝑖  /  𝑘 ⦌ ( 𝐶  mod  𝑀 ) ) | 
						
							| 83 |  | csbov1g | ⊢ ( 𝑖  ∈  V  →  ⦋ 𝑖  /  𝑘 ⦌ ( 𝐵  mod  𝑀 )  =  ( ⦋ 𝑖  /  𝑘 ⦌ 𝐵  mod  𝑀 ) ) | 
						
							| 84 | 83 | elv | ⊢ ⦋ 𝑖  /  𝑘 ⦌ ( 𝐵  mod  𝑀 )  =  ( ⦋ 𝑖  /  𝑘 ⦌ 𝐵  mod  𝑀 ) | 
						
							| 85 |  | csbov1g | ⊢ ( 𝑖  ∈  V  →  ⦋ 𝑖  /  𝑘 ⦌ ( 𝐶  mod  𝑀 )  =  ( ⦋ 𝑖  /  𝑘 ⦌ 𝐶  mod  𝑀 ) ) | 
						
							| 86 | 85 | elv | ⊢ ⦋ 𝑖  /  𝑘 ⦌ ( 𝐶  mod  𝑀 )  =  ( ⦋ 𝑖  /  𝑘 ⦌ 𝐶  mod  𝑀 ) | 
						
							| 87 | 82 84 86 | 3eqtr3g | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( ⦋ 𝑖  /  𝑘 ⦌ 𝐵  mod  𝑀 )  =  ( ⦋ 𝑖  /  𝑘 ⦌ 𝐶  mod  𝑀 ) ) | 
						
							| 88 | 87 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( ∏ 𝑘  ∈  𝑦 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑦 𝐶  mod  𝑀 ) )  →  ( ⦋ 𝑖  /  𝑘 ⦌ 𝐵  mod  𝑀 )  =  ( ⦋ 𝑖  /  𝑘 ⦌ 𝐶  mod  𝑀 ) ) | 
						
							| 89 | 63 66 67 71 74 75 88 | modmul12d | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( ∏ 𝑘  ∈  𝑦 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑦 𝐶  mod  𝑀 ) )  →  ( ( ∏ 𝑘  ∈  𝑦 𝐵  ·  ⦋ 𝑖  /  𝑘 ⦌ 𝐵 )  mod  𝑀 )  =  ( ( ∏ 𝑘  ∈  𝑦 𝐶  ·  ⦋ 𝑖  /  𝑘 ⦌ 𝐶 )  mod  𝑀 ) ) | 
						
							| 90 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑖  /  𝑘 ⦌ 𝐶 | 
						
							| 91 | 64 | zcnd | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  𝑘  ∈  𝑦 )  →  𝐶  ∈  ℂ ) | 
						
							| 92 |  | csbeq1a | ⊢ ( 𝑘  =  𝑖  →  𝐶  =  ⦋ 𝑖  /  𝑘 ⦌ 𝐶 ) | 
						
							| 93 | 70 | zcnd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ⦋ 𝑖  /  𝑘 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 94 | 33 90 39 41 44 91 92 93 | fprodsplitsn | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑖 } ) 𝐶  =  ( ∏ 𝑘  ∈  𝑦 𝐶  ·  ⦋ 𝑖  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 95 | 94 | oveq1d | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑖 } ) 𝐶  mod  𝑀 )  =  ( ( ∏ 𝑘  ∈  𝑦 𝐶  ·  ⦋ 𝑖  /  𝑘 ⦌ 𝐶 )  mod  𝑀 ) ) | 
						
							| 96 | 95 | eqcomd | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( ( ∏ 𝑘  ∈  𝑦 𝐶  ·  ⦋ 𝑖  /  𝑘 ⦌ 𝐶 )  mod  𝑀 )  =  ( ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑖 } ) 𝐶  mod  𝑀 ) ) | 
						
							| 97 | 96 | adantr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( ∏ 𝑘  ∈  𝑦 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑦 𝐶  mod  𝑀 ) )  →  ( ( ∏ 𝑘  ∈  𝑦 𝐶  ·  ⦋ 𝑖  /  𝑘 ⦌ 𝐶 )  mod  𝑀 )  =  ( ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑖 } ) 𝐶  mod  𝑀 ) ) | 
						
							| 98 | 61 89 97 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  ∧  ( ∏ 𝑘  ∈  𝑦 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑦 𝐶  mod  𝑀 ) )  →  ( ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑖 } ) 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑖 } ) 𝐶  mod  𝑀 ) ) | 
						
							| 99 | 98 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑦  ⊆  𝐴  ∧  𝑖  ∈  ( 𝐴  ∖  𝑦 ) ) )  →  ( ( ∏ 𝑘  ∈  𝑦 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝑦 𝐶  mod  𝑀 )  →  ( ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑖 } ) 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  ( 𝑦  ∪  { 𝑖 } ) 𝐶  mod  𝑀 ) ) ) | 
						
							| 100 | 10 15 20 25 32 99 1 | findcard2d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  𝐴 𝐵  mod  𝑀 )  =  ( ∏ 𝑘  ∈  𝐴 𝐶  mod  𝑀 ) ) |