Step |
Hyp |
Ref |
Expression |
1 |
|
fprodmodd.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fprodmodd.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) |
3 |
|
fprodmodd.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℤ ) |
4 |
|
fprodmodd.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
5 |
|
fprodmodd.p |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ) |
6 |
|
prodeq1 |
⊢ ( 𝑥 = ∅ → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ ∅ 𝐵 ) |
7 |
6
|
oveq1d |
⊢ ( 𝑥 = ∅ → ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ∅ 𝐵 mod 𝑀 ) ) |
8 |
|
prodeq1 |
⊢ ( 𝑥 = ∅ → ∏ 𝑘 ∈ 𝑥 𝐶 = ∏ 𝑘 ∈ ∅ 𝐶 ) |
9 |
8
|
oveq1d |
⊢ ( 𝑥 = ∅ → ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) = ( ∏ 𝑘 ∈ ∅ 𝐶 mod 𝑀 ) ) |
10 |
7 9
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) ↔ ( ∏ 𝑘 ∈ ∅ 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ∅ 𝐶 mod 𝑀 ) ) ) |
11 |
|
prodeq1 |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ 𝑦 𝐵 ) |
12 |
11
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) ) |
13 |
|
prodeq1 |
⊢ ( 𝑥 = 𝑦 → ∏ 𝑘 ∈ 𝑥 𝐶 = ∏ 𝑘 ∈ 𝑦 𝐶 ) |
14 |
13
|
oveq1d |
⊢ ( 𝑥 = 𝑦 → ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) |
15 |
12 14
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) ↔ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) ) |
16 |
|
prodeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑖 } ) → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 ) |
17 |
16
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑖 } ) → ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 mod 𝑀 ) ) |
18 |
|
prodeq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑖 } ) → ∏ 𝑘 ∈ 𝑥 𝐶 = ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 ) |
19 |
18
|
oveq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑖 } ) → ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) ) |
20 |
17 19
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑖 } ) → ( ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) ↔ ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) ) ) |
21 |
|
prodeq1 |
⊢ ( 𝑥 = 𝐴 → ∏ 𝑘 ∈ 𝑥 𝐵 = ∏ 𝑘 ∈ 𝐴 𝐵 ) |
22 |
21
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝐴 𝐵 mod 𝑀 ) ) |
23 |
|
prodeq1 |
⊢ ( 𝑥 = 𝐴 → ∏ 𝑘 ∈ 𝑥 𝐶 = ∏ 𝑘 ∈ 𝐴 𝐶 ) |
24 |
23
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝐴 𝐶 mod 𝑀 ) ) |
25 |
22 24
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ∏ 𝑘 ∈ 𝑥 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑥 𝐶 mod 𝑀 ) ↔ ( ∏ 𝑘 ∈ 𝐴 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝐴 𝐶 mod 𝑀 ) ) ) |
26 |
|
prod0 |
⊢ ∏ 𝑘 ∈ ∅ 𝐵 = 1 |
27 |
26
|
a1i |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ∅ 𝐵 = 1 ) |
28 |
27
|
oveq1d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ ∅ 𝐵 mod 𝑀 ) = ( 1 mod 𝑀 ) ) |
29 |
|
prod0 |
⊢ ∏ 𝑘 ∈ ∅ 𝐶 = 1 |
30 |
29
|
eqcomi |
⊢ 1 = ∏ 𝑘 ∈ ∅ 𝐶 |
31 |
30
|
oveq1i |
⊢ ( 1 mod 𝑀 ) = ( ∏ 𝑘 ∈ ∅ 𝐶 mod 𝑀 ) |
32 |
28 31
|
eqtrdi |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ ∅ 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ∅ 𝐶 mod 𝑀 ) ) |
33 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) |
34 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑘 ⦌ 𝐵 |
35 |
|
ssfi |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ∈ Fin ) |
36 |
35
|
ex |
⊢ ( 𝐴 ∈ Fin → ( 𝑦 ⊆ 𝐴 → 𝑦 ∈ Fin ) ) |
37 |
36 1
|
syl11 |
⊢ ( 𝑦 ⊆ 𝐴 → ( 𝜑 → 𝑦 ∈ Fin ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( 𝜑 → 𝑦 ∈ Fin ) ) |
39 |
38
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑦 ∈ Fin ) |
40 |
|
simpr |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) |
41 |
40
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) |
42 |
|
eldifn |
⊢ ( 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) → ¬ 𝑖 ∈ 𝑦 ) |
43 |
42
|
adantl |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) → ¬ 𝑖 ∈ 𝑦 ) |
44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ¬ 𝑖 ∈ 𝑦 ) |
45 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝜑 ) |
46 |
|
ssel |
⊢ ( 𝑦 ⊆ 𝐴 → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) |
47 |
46
|
adantr |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) |
48 |
47
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 𝑘 ∈ 𝑦 → 𝑘 ∈ 𝐴 ) ) |
49 |
48
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝑘 ∈ 𝐴 ) |
50 |
45 49 2
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐵 ∈ ℤ ) |
51 |
50
|
zcnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐵 ∈ ℂ ) |
52 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑖 → 𝐵 = ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) |
53 |
|
eldifi |
⊢ ( 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) → 𝑖 ∈ 𝐴 ) |
54 |
53
|
adantl |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) → 𝑖 ∈ 𝐴 ) |
55 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) |
56 |
|
rspcsbela |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
57 |
54 55 56
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
58 |
57
|
zcnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
59 |
33 34 39 41 44 51 52 58
|
fprodsplitsn |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 = ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) ) |
60 |
59
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 mod 𝑀 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) mod 𝑀 ) ) |
61 |
60
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 mod 𝑀 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) mod 𝑀 ) ) |
62 |
39 50
|
fprodzcl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ∏ 𝑘 ∈ 𝑦 𝐵 ∈ ℤ ) |
64 |
45 49 3
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐶 ∈ ℤ ) |
65 |
39 64
|
fprodzcl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ 𝑦 𝐶 ∈ ℤ ) |
66 |
65
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ∏ 𝑘 ∈ 𝑦 𝐶 ∈ ℤ ) |
67 |
57
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ∈ ℤ ) |
68 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℤ ) |
69 |
|
rspcsbela |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 𝐶 ∈ ℤ ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ ℤ ) |
70 |
54 68 69
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ ℤ ) |
71 |
70
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ ℤ ) |
72 |
4
|
nnrpd |
⊢ ( 𝜑 → 𝑀 ∈ ℝ+ ) |
73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → 𝑀 ∈ ℝ+ ) |
74 |
73
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → 𝑀 ∈ ℝ+ ) |
75 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) |
76 |
5
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ) |
77 |
|
rspsbca |
⊢ ( ( 𝑖 ∈ 𝐴 ∧ ∀ 𝑘 ∈ 𝐴 ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ) → [ 𝑖 / 𝑘 ] ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ) |
78 |
54 76 77
|
syl2anr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → [ 𝑖 / 𝑘 ] ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ) |
79 |
|
vex |
⊢ 𝑖 ∈ V |
80 |
|
sbceqg |
⊢ ( 𝑖 ∈ V → ( [ 𝑖 / 𝑘 ] ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ↔ ⦋ 𝑖 / 𝑘 ⦌ ( 𝐵 mod 𝑀 ) = ⦋ 𝑖 / 𝑘 ⦌ ( 𝐶 mod 𝑀 ) ) ) |
81 |
79 80
|
mp1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( [ 𝑖 / 𝑘 ] ( 𝐵 mod 𝑀 ) = ( 𝐶 mod 𝑀 ) ↔ ⦋ 𝑖 / 𝑘 ⦌ ( 𝐵 mod 𝑀 ) = ⦋ 𝑖 / 𝑘 ⦌ ( 𝐶 mod 𝑀 ) ) ) |
82 |
78 81
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑖 / 𝑘 ⦌ ( 𝐵 mod 𝑀 ) = ⦋ 𝑖 / 𝑘 ⦌ ( 𝐶 mod 𝑀 ) ) |
83 |
|
csbov1g |
⊢ ( 𝑖 ∈ V → ⦋ 𝑖 / 𝑘 ⦌ ( 𝐵 mod 𝑀 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐵 mod 𝑀 ) ) |
84 |
83
|
elv |
⊢ ⦋ 𝑖 / 𝑘 ⦌ ( 𝐵 mod 𝑀 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐵 mod 𝑀 ) |
85 |
|
csbov1g |
⊢ ( 𝑖 ∈ V → ⦋ 𝑖 / 𝑘 ⦌ ( 𝐶 mod 𝑀 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 mod 𝑀 ) ) |
86 |
85
|
elv |
⊢ ⦋ 𝑖 / 𝑘 ⦌ ( 𝐶 mod 𝑀 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 mod 𝑀 ) |
87 |
82 84 86
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐵 mod 𝑀 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 mod 𝑀 ) ) |
88 |
87
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ( ⦋ 𝑖 / 𝑘 ⦌ 𝐵 mod 𝑀 ) = ( ⦋ 𝑖 / 𝑘 ⦌ 𝐶 mod 𝑀 ) ) |
89 |
63 66 67 71 74 75 88
|
modmul12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐵 · ⦋ 𝑖 / 𝑘 ⦌ 𝐵 ) mod 𝑀 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐶 · ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ) mod 𝑀 ) ) |
90 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑖 / 𝑘 ⦌ 𝐶 |
91 |
64
|
zcnd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ 𝑘 ∈ 𝑦 ) → 𝐶 ∈ ℂ ) |
92 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑖 → 𝐶 = ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ) |
93 |
70
|
zcnd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
94 |
33 90 39 41 44 91 92 93
|
fprodsplitsn |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 = ( ∏ 𝑘 ∈ 𝑦 𝐶 · ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ) ) |
95 |
94
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) = ( ( ∏ 𝑘 ∈ 𝑦 𝐶 · ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ) mod 𝑀 ) ) |
96 |
95
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐶 · ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ) mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) ) |
97 |
96
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐶 · ⦋ 𝑖 / 𝑘 ⦌ 𝐶 ) mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) ) |
98 |
61 89 97
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) ∧ ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) ) → ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) ) |
99 |
98
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑖 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( ( ∏ 𝑘 ∈ 𝑦 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝑦 𝐶 mod 𝑀 ) → ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ ( 𝑦 ∪ { 𝑖 } ) 𝐶 mod 𝑀 ) ) ) |
100 |
10 15 20 25 32 99 1
|
findcard2d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ 𝐴 𝐵 mod 𝑀 ) = ( ∏ 𝑘 ∈ 𝐴 𝐶 mod 𝑀 ) ) |