Step |
Hyp |
Ref |
Expression |
1 |
|
fprodn0.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
2 |
|
fprodn0.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
3 |
|
fprodn0.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≠ 0 ) |
4 |
|
prodeq1 |
⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ ∅ 𝐵 ) |
5 |
|
prod0 |
⊢ ∏ 𝑘 ∈ ∅ 𝐵 = 1 |
6 |
4 5
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 = 1 ) |
7 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
8 |
7
|
a1i |
⊢ ( 𝐴 = ∅ → 1 ≠ 0 ) |
9 |
6 8
|
eqnetrd |
⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |
10 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ) |
11 |
|
prodfc |
⊢ ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ∏ 𝑘 ∈ 𝐴 𝐵 |
12 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
13 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
14 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
15 |
2
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
17 |
16
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ∈ ℂ ) |
18 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
19 |
14 18
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
20 |
|
fvco3 |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
21 |
19 20
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
22 |
12 13 14 17 21
|
fprod |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
23 |
11 22
|
eqtr3id |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ∏ 𝑘 ∈ 𝐴 𝐵 = ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
24 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
25 |
13 24
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) |
26 |
|
fco |
⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) |
27 |
16 19 26
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) |
28 |
27
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑚 ) ∈ ℂ ) |
29 |
|
fvco3 |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
30 |
19 29
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
31 |
18
|
ffvelrnda |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) |
32 |
31
|
adantll |
⊢ ( ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) |
33 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) → ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) |
34 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝑓 ‘ 𝑚 ) |
35 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
36 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 |
37 |
36
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ |
38 |
35 37
|
nfim |
⊢ Ⅎ 𝑘 ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
39 |
|
csbeq1a |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑚 ) → 𝐵 = ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ) |
40 |
39
|
eleq1d |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑚 ) → ( 𝐵 ∈ ℂ ↔ ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
41 |
40
|
imbi2d |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑚 ) → ( ( 𝜑 → 𝐵 ∈ ℂ ) ↔ ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) ) |
42 |
2
|
expcom |
⊢ ( 𝑘 ∈ 𝐴 → ( 𝜑 → 𝐵 ∈ ℂ ) ) |
43 |
34 38 41 42
|
vtoclgaf |
⊢ ( ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 → ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
44 |
43
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
45 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
46 |
45
|
fvmpts |
⊢ ( ( ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ∧ ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) = ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ) |
47 |
33 44 46
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) = ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ) |
48 |
|
nfcv |
⊢ Ⅎ 𝑘 0 |
49 |
36 48
|
nfne |
⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ≠ 0 |
50 |
35 49
|
nfim |
⊢ Ⅎ 𝑘 ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ≠ 0 ) |
51 |
39
|
neeq1d |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑚 ) → ( 𝐵 ≠ 0 ↔ ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ≠ 0 ) ) |
52 |
51
|
imbi2d |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑚 ) → ( ( 𝜑 → 𝐵 ≠ 0 ) ↔ ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ≠ 0 ) ) ) |
53 |
3
|
expcom |
⊢ ( 𝑘 ∈ 𝐴 → ( 𝜑 → 𝐵 ≠ 0 ) ) |
54 |
34 50 52 53
|
vtoclgaf |
⊢ ( ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 → ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ≠ 0 ) ) |
55 |
54
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ≠ 0 ) |
56 |
47 55
|
eqnetrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) ≠ 0 ) |
57 |
32 56
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) ≠ 0 ) |
58 |
57
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) ≠ 0 ) |
59 |
30 58
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑚 ) ≠ 0 ) |
60 |
25 28 59
|
prodfn0 |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ≠ 0 ) |
61 |
23 60
|
eqnetrd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |
62 |
61
|
expr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ) |
63 |
62
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ) |
64 |
63
|
expimpd |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ) |
65 |
|
fz1f1o |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
66 |
1 65
|
syl |
⊢ ( 𝜑 → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
67 |
10 64 66
|
mpjaod |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |