| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fprodn0.1 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 2 |
|
fprodn0.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 3 |
|
fprodn0.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ≠ 0 ) |
| 4 |
|
prodeq1 |
⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 = ∏ 𝑘 ∈ ∅ 𝐵 ) |
| 5 |
|
prod0 |
⊢ ∏ 𝑘 ∈ ∅ 𝐵 = 1 |
| 6 |
4 5
|
eqtrdi |
⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 = 1 ) |
| 7 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 8 |
7
|
a1i |
⊢ ( 𝐴 = ∅ → 1 ≠ 0 ) |
| 9 |
6 8
|
eqnetrd |
⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |
| 10 |
9
|
a1i |
⊢ ( 𝜑 → ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ) |
| 11 |
|
prodfc |
⊢ ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ∏ 𝑘 ∈ 𝐴 𝐵 |
| 12 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 13 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
| 14 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) |
| 15 |
2
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ) |
| 17 |
16
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) ∈ ℂ ) |
| 18 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 19 |
14 18
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) |
| 20 |
|
fvco3 |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 21 |
19 20
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑛 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
| 22 |
12 13 14 17 21
|
fprod |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑚 ) = ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 23 |
11 22
|
eqtr3id |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ∏ 𝑘 ∈ 𝐴 𝐵 = ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 24 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 25 |
13 24
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 26 |
|
fco |
⊢ ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) : 𝐴 ⟶ ℂ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) |
| 27 |
16 19 26
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ ℂ ) |
| 28 |
27
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑚 ) ∈ ℂ ) |
| 29 |
|
fvco3 |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) ⟶ 𝐴 ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
| 30 |
19 29
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) ) |
| 31 |
18
|
ffvelcdmda |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) |
| 32 |
31
|
adantll |
⊢ ( ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) |
| 33 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) → ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) |
| 34 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝑓 ‘ 𝑚 ) |
| 35 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
| 36 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 |
| 37 |
36
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ |
| 38 |
35 37
|
nfim |
⊢ Ⅎ 𝑘 ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 39 |
|
csbeq1a |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑚 ) → 𝐵 = ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ) |
| 40 |
39
|
eleq1d |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑚 ) → ( 𝐵 ∈ ℂ ↔ ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 41 |
40
|
imbi2d |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑚 ) → ( ( 𝜑 → 𝐵 ∈ ℂ ) ↔ ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) ) |
| 42 |
2
|
expcom |
⊢ ( 𝑘 ∈ 𝐴 → ( 𝜑 → 𝐵 ∈ ℂ ) ) |
| 43 |
34 38 41 42
|
vtoclgaf |
⊢ ( ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 → ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) ) |
| 44 |
43
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) |
| 45 |
|
eqid |
⊢ ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
| 46 |
45
|
fvmpts |
⊢ ( ( ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ∧ ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ∈ ℂ ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) = ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ) |
| 47 |
33 44 46
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) = ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ) |
| 48 |
|
nfcv |
⊢ Ⅎ 𝑘 0 |
| 49 |
36 48
|
nfne |
⊢ Ⅎ 𝑘 ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ≠ 0 |
| 50 |
35 49
|
nfim |
⊢ Ⅎ 𝑘 ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ≠ 0 ) |
| 51 |
39
|
neeq1d |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑚 ) → ( 𝐵 ≠ 0 ↔ ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ≠ 0 ) ) |
| 52 |
51
|
imbi2d |
⊢ ( 𝑘 = ( 𝑓 ‘ 𝑚 ) → ( ( 𝜑 → 𝐵 ≠ 0 ) ↔ ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ≠ 0 ) ) ) |
| 53 |
3
|
expcom |
⊢ ( 𝑘 ∈ 𝐴 → ( 𝜑 → 𝐵 ≠ 0 ) ) |
| 54 |
34 50 52 53
|
vtoclgaf |
⊢ ( ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 → ( 𝜑 → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ≠ 0 ) ) |
| 55 |
54
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) → ⦋ ( 𝑓 ‘ 𝑚 ) / 𝑘 ⦌ 𝐵 ≠ 0 ) |
| 56 |
47 55
|
eqnetrd |
⊢ ( ( 𝜑 ∧ ( 𝑓 ‘ 𝑚 ) ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) ≠ 0 ) |
| 57 |
32 56
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) ≠ 0 ) |
| 58 |
57
|
anassrs |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ‘ ( 𝑓 ‘ 𝑚 ) ) ≠ 0 ) |
| 59 |
30 58
|
eqnetrd |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ∧ 𝑚 ∈ ( 1 ... ( ♯ ‘ 𝐴 ) ) ) → ( ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ‘ 𝑚 ) ≠ 0 ) |
| 60 |
25 28 59
|
prodfn0 |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ( seq 1 ( · , ( ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝐴 ) ) ≠ 0 ) |
| 61 |
23 60
|
eqnetrd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |
| 62 |
61
|
expr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ) |
| 63 |
62
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ) |
| 64 |
63
|
expimpd |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) ) |
| 65 |
|
fz1f1o |
⊢ ( 𝐴 ∈ Fin → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
| 66 |
1 65
|
syl |
⊢ ( 𝜑 → ( 𝐴 = ∅ ∨ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐴 ) ) –1-1-onto→ 𝐴 ) ) ) |
| 67 |
10 64 66
|
mpjaod |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ≠ 0 ) |