| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodn0f.kph | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | fprodn0f.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 3 |  | fprodn0f.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 4 |  | fprodn0f.bne0 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ≠  0 ) | 
						
							| 5 |  | difssd | ⊢ ( 𝜑  →  ( ℂ  ∖  { 0 } )  ⊆  ℂ ) | 
						
							| 6 |  | eldifi | ⊢ ( 𝑥  ∈  ( ℂ  ∖  { 0 } )  →  𝑥  ∈  ℂ ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( 𝑥  ∈  ( ℂ  ∖  { 0 } )  ∧  𝑦  ∈  ( ℂ  ∖  { 0 } ) )  →  𝑥  ∈  ℂ ) | 
						
							| 8 |  | eldifi | ⊢ ( 𝑦  ∈  ( ℂ  ∖  { 0 } )  →  𝑦  ∈  ℂ ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑥  ∈  ( ℂ  ∖  { 0 } )  ∧  𝑦  ∈  ( ℂ  ∖  { 0 } ) )  →  𝑦  ∈  ℂ ) | 
						
							| 10 | 7 9 | mulcld | ⊢ ( ( 𝑥  ∈  ( ℂ  ∖  { 0 } )  ∧  𝑦  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℂ ) | 
						
							| 11 |  | eldifsni | ⊢ ( 𝑥  ∈  ( ℂ  ∖  { 0 } )  →  𝑥  ≠  0 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝑥  ∈  ( ℂ  ∖  { 0 } )  ∧  𝑦  ∈  ( ℂ  ∖  { 0 } ) )  →  𝑥  ≠  0 ) | 
						
							| 13 |  | eldifsni | ⊢ ( 𝑦  ∈  ( ℂ  ∖  { 0 } )  →  𝑦  ≠  0 ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝑥  ∈  ( ℂ  ∖  { 0 } )  ∧  𝑦  ∈  ( ℂ  ∖  { 0 } ) )  →  𝑦  ≠  0 ) | 
						
							| 15 | 7 9 12 14 | mulne0d | ⊢ ( ( 𝑥  ∈  ( ℂ  ∖  { 0 } )  ∧  𝑦  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 𝑥  ·  𝑦 )  ≠  0 ) | 
						
							| 16 | 15 | neneqd | ⊢ ( ( 𝑥  ∈  ( ℂ  ∖  { 0 } )  ∧  𝑦  ∈  ( ℂ  ∖  { 0 } ) )  →  ¬  ( 𝑥  ·  𝑦 )  =  0 ) | 
						
							| 17 |  | ovex | ⊢ ( 𝑥  ·  𝑦 )  ∈  V | 
						
							| 18 | 17 | elsn | ⊢ ( ( 𝑥  ·  𝑦 )  ∈  { 0 }  ↔  ( 𝑥  ·  𝑦 )  =  0 ) | 
						
							| 19 | 16 18 | sylnibr | ⊢ ( ( 𝑥  ∈  ( ℂ  ∖  { 0 } )  ∧  𝑦  ∈  ( ℂ  ∖  { 0 } ) )  →  ¬  ( 𝑥  ·  𝑦 )  ∈  { 0 } ) | 
						
							| 20 | 10 19 | eldifd | ⊢ ( ( 𝑥  ∈  ( ℂ  ∖  { 0 } )  ∧  𝑦  ∈  ( ℂ  ∖  { 0 } ) )  →  ( 𝑥  ·  𝑦 )  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( ℂ  ∖  { 0 } )  ∧  𝑦  ∈  ( ℂ  ∖  { 0 } ) ) )  →  ( 𝑥  ·  𝑦 )  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 22 | 4 | neneqd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ¬  𝐵  =  0 ) | 
						
							| 23 |  | elsng | ⊢ ( 𝐵  ∈  ℂ  →  ( 𝐵  ∈  { 0 }  ↔  𝐵  =  0 ) ) | 
						
							| 24 | 3 23 | syl | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ( 𝐵  ∈  { 0 }  ↔  𝐵  =  0 ) ) | 
						
							| 25 | 22 24 | mtbird | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  ¬  𝐵  ∈  { 0 } ) | 
						
							| 26 | 3 25 | eldifd | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 27 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 28 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 29 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 30 | 29 | elsn | ⊢ ( 1  ∈  { 0 }  ↔  1  =  0 ) | 
						
							| 31 | 28 30 | nemtbir | ⊢ ¬  1  ∈  { 0 } | 
						
							| 32 |  | eldif | ⊢ ( 1  ∈  ( ℂ  ∖  { 0 } )  ↔  ( 1  ∈  ℂ  ∧  ¬  1  ∈  { 0 } ) ) | 
						
							| 33 | 27 31 32 | mpbir2an | ⊢ 1  ∈  ( ℂ  ∖  { 0 } ) | 
						
							| 34 | 33 | a1i | ⊢ ( 𝜑  →  1  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 35 | 1 5 21 2 26 34 | fprodcllemf | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 𝐵  ∈  ( ℂ  ∖  { 0 } ) ) | 
						
							| 36 |  | eldifsni | ⊢ ( ∏ 𝑘  ∈  𝐴 𝐵  ∈  ( ℂ  ∖  { 0 } )  →  ∏ 𝑘  ∈  𝐴 𝐵  ≠  0 ) | 
						
							| 37 | 35 36 | syl | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 𝐵  ≠  0 ) |