Metamath Proof Explorer


Theorem fprodnn0cl

Description: Closure of a finite product of nonnegative integers. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcl.1 ( 𝜑𝐴 ∈ Fin )
fprodnn0cl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℕ0 )
Assertion fprodnn0cl ( 𝜑 → ∏ 𝑘𝐴 𝐵 ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 fprodcl.1 ( 𝜑𝐴 ∈ Fin )
2 fprodnn0cl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℕ0 )
3 nn0sscn 0 ⊆ ℂ
4 3 a1i ( 𝜑 → ℕ0 ⊆ ℂ )
5 nn0mulcl ( ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) → ( 𝑥 · 𝑦 ) ∈ ℕ0 )
6 5 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ) ) → ( 𝑥 · 𝑦 ) ∈ ℕ0 )
7 1nn0 1 ∈ ℕ0
8 7 a1i ( 𝜑 → 1 ∈ ℕ0 )
9 4 6 1 2 8 fprodcllem ( 𝜑 → ∏ 𝑘𝐴 𝐵 ∈ ℕ0 )