Description: Closure of a finite product of nonnegative integers. (Contributed by Scott Fenton, 14-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
fprodnn0cl.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℕ0 ) | ||
Assertion | fprodnn0cl | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℕ0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
2 | fprodnn0cl.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℕ0 ) | |
3 | nn0sscn | ⊢ ℕ0 ⊆ ℂ | |
4 | 3 | a1i | ⊢ ( 𝜑 → ℕ0 ⊆ ℂ ) |
5 | nn0mulcl | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝑥 · 𝑦 ) ∈ ℕ0 ) | |
6 | 5 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ) ) → ( 𝑥 · 𝑦 ) ∈ ℕ0 ) |
7 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
8 | 7 | a1i | ⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
9 | 4 6 1 2 8 | fprodcllem | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℕ0 ) |