Metamath Proof Explorer


Theorem fprodnncl

Description: Closure of a finite product of positive integers. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcl.1 ( 𝜑𝐴 ∈ Fin )
fprodnncl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℕ )
Assertion fprodnncl ( 𝜑 → ∏ 𝑘𝐴 𝐵 ∈ ℕ )

Proof

Step Hyp Ref Expression
1 fprodcl.1 ( 𝜑𝐴 ∈ Fin )
2 fprodnncl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℕ )
3 nnsscn ℕ ⊆ ℂ
4 3 a1i ( 𝜑 → ℕ ⊆ ℂ )
5 nnmulcl ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 · 𝑦 ) ∈ ℕ )
6 5 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 · 𝑦 ) ∈ ℕ )
7 1nn 1 ∈ ℕ
8 7 a1i ( 𝜑 → 1 ∈ ℕ )
9 4 6 1 2 8 fprodcllem ( 𝜑 → ∏ 𝑘𝐴 𝐵 ∈ ℕ )