Step |
Hyp |
Ref |
Expression |
1 |
|
fprodntriv.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
fprodntriv.2 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
3 |
|
fprodntriv.3 |
⊢ ( 𝜑 → 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) |
4 |
2 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
5 |
|
peano2uz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
7 |
6 1
|
eleqtrrdi |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ 𝑍 ) |
8 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
9 |
|
eqid |
⊢ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) = ( ℤ≥ ‘ ( 𝑁 + 1 ) ) |
10 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
11 |
10 1
|
eleq2s |
⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ℤ ) |
12 |
2 11
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
13 |
12
|
peano2zd |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ℤ ) |
14 |
|
seqex |
⊢ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ∈ V |
15 |
14
|
a1i |
⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ∈ V ) |
16 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
17 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
18 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → 𝐴 ⊆ ( 𝑀 ... 𝑁 ) ) |
19 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → 𝑁 ∈ ℤ ) |
20 |
19
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → 𝑁 ∈ ℝ ) |
21 |
19
|
peano2zd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( 𝑁 + 1 ) ∈ ℤ ) |
22 |
21
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( 𝑁 + 1 ) ∈ ℝ ) |
23 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) → 𝑚 ∈ ℤ ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → 𝑚 ∈ ℤ ) |
25 |
24
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → 𝑚 ∈ ℝ ) |
26 |
20
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → 𝑁 < ( 𝑁 + 1 ) ) |
27 |
|
elfzle1 |
⊢ ( 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) → ( 𝑁 + 1 ) ≤ 𝑚 ) |
28 |
27
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( 𝑁 + 1 ) ≤ 𝑚 ) |
29 |
20 22 25 26 28
|
ltletrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → 𝑁 < 𝑚 ) |
30 |
20 25
|
ltnled |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( 𝑁 < 𝑚 ↔ ¬ 𝑚 ≤ 𝑁 ) ) |
31 |
29 30
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ¬ 𝑚 ≤ 𝑁 ) |
32 |
31
|
intnand |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ¬ ( 𝑀 ≤ 𝑚 ∧ 𝑚 ≤ 𝑁 ) ) |
33 |
32
|
intnand |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ¬ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝑚 ∧ 𝑚 ≤ 𝑁 ) ) ) |
34 |
|
elfz2 |
⊢ ( 𝑚 ∈ ( 𝑀 ... 𝑁 ) ↔ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ ) ∧ ( 𝑀 ≤ 𝑚 ∧ 𝑚 ≤ 𝑁 ) ) ) |
35 |
33 34
|
sylnibr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ¬ 𝑚 ∈ ( 𝑀 ... 𝑁 ) ) |
36 |
18 35
|
ssneldd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ¬ 𝑚 ∈ 𝐴 ) |
37 |
36
|
iffalsed |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 1 ) = 1 ) |
38 |
|
fzssuz |
⊢ ( ( 𝑁 + 1 ) ... 𝑛 ) ⊆ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) |
39 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
40 |
|
uzss |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
41 |
39 40
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
42 |
41 1
|
sseqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ⊆ 𝑍 ) |
43 |
38 42
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( ( 𝑁 + 1 ) ... 𝑛 ) ⊆ 𝑍 ) |
44 |
43
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → 𝑚 ∈ 𝑍 ) |
45 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
46 |
37 45
|
eqeltrdi |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 1 ) ∈ ℂ ) |
47 |
|
nfcv |
⊢ Ⅎ 𝑘 𝑚 |
48 |
|
nfv |
⊢ Ⅎ 𝑘 𝑚 ∈ 𝐴 |
49 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑚 / 𝑘 ⦌ 𝐵 |
50 |
|
nfcv |
⊢ Ⅎ 𝑘 1 |
51 |
48 49 50
|
nfif |
⊢ Ⅎ 𝑘 if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 1 ) |
52 |
|
eleq1w |
⊢ ( 𝑘 = 𝑚 → ( 𝑘 ∈ 𝐴 ↔ 𝑚 ∈ 𝐴 ) ) |
53 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑚 → 𝐵 = ⦋ 𝑚 / 𝑘 ⦌ 𝐵 ) |
54 |
52 53
|
ifbieq1d |
⊢ ( 𝑘 = 𝑚 → if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) = if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 1 ) ) |
55 |
|
eqid |
⊢ ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) = ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) |
56 |
47 51 54 55
|
fvmptf |
⊢ ( ( 𝑚 ∈ 𝑍 ∧ if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 1 ) ∈ ℂ ) → ( ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 1 ) ) |
57 |
44 46 56
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑚 ) = if ( 𝑚 ∈ 𝐴 , ⦋ 𝑚 / 𝑘 ⦌ 𝐵 , 1 ) ) |
58 |
|
elfzuz |
⊢ ( 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) → 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
59 |
58
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
60 |
|
1ex |
⊢ 1 ∈ V |
61 |
60
|
fvconst2 |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) × { 1 } ) ‘ 𝑚 ) = 1 ) |
62 |
59 61
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) × { 1 } ) ‘ 𝑚 ) = 1 ) |
63 |
37 57 62
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∧ 𝑚 ∈ ( ( 𝑁 + 1 ) ... 𝑛 ) ) → ( ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ‘ 𝑚 ) = ( ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) × { 1 } ) ‘ 𝑚 ) ) |
64 |
17 63
|
seqfveq |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ‘ 𝑛 ) = ( seq ( 𝑁 + 1 ) ( · , ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) × { 1 } ) ) ‘ 𝑛 ) ) |
65 |
9
|
prodf1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) → ( seq ( 𝑁 + 1 ) ( · , ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) × { 1 } ) ) ‘ 𝑛 ) = 1 ) |
66 |
65
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) × { 1 } ) ) ‘ 𝑛 ) = 1 ) |
67 |
64 66
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) → ( seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ‘ 𝑛 ) = 1 ) |
68 |
9 13 15 16 67
|
climconst |
⊢ ( 𝜑 → seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 1 ) |
69 |
|
neeq1 |
⊢ ( 𝑦 = 1 → ( 𝑦 ≠ 0 ↔ 1 ≠ 0 ) ) |
70 |
|
breq2 |
⊢ ( 𝑦 = 1 → ( seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ↔ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 1 ) ) |
71 |
69 70
|
anbi12d |
⊢ ( 𝑦 = 1 → ( ( 𝑦 ≠ 0 ∧ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ↔ ( 1 ≠ 0 ∧ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 1 ) ) ) |
72 |
60 71
|
spcev |
⊢ ( ( 1 ≠ 0 ∧ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 1 ) → ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) |
73 |
8 68 72
|
sylancr |
⊢ ( 𝜑 → ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) |
74 |
|
seqeq1 |
⊢ ( 𝑛 = ( 𝑁 + 1 ) → seq 𝑛 ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) = seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ) |
75 |
74
|
breq1d |
⊢ ( 𝑛 = ( 𝑁 + 1 ) → ( seq 𝑛 ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ↔ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) |
76 |
75
|
anbi2d |
⊢ ( 𝑛 = ( 𝑁 + 1 ) → ( ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ↔ ( 𝑦 ≠ 0 ∧ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) ) |
77 |
76
|
exbidv |
⊢ ( 𝑛 = ( 𝑁 + 1 ) → ( ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ↔ ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) ) |
78 |
77
|
rspcev |
⊢ ( ( ( 𝑁 + 1 ) ∈ 𝑍 ∧ ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq ( 𝑁 + 1 ) ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) |
79 |
7 73 78
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑛 ∈ 𝑍 ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑛 ( · , ( 𝑘 ∈ 𝑍 ↦ if ( 𝑘 ∈ 𝐴 , 𝐵 , 1 ) ) ) ⇝ 𝑦 ) ) |