Step |
Hyp |
Ref |
Expression |
1 |
|
fprodp1.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
fprodp1.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) ) → 𝐴 ∈ ℂ ) |
3 |
|
fprodp1.3 |
⊢ ( 𝑘 = ( 𝑁 + 1 ) → 𝐴 = 𝐵 ) |
4 |
|
peano2uz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
6 |
5 2 3
|
fprodm1 |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐴 = ( ∏ 𝑘 ∈ ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) 𝐴 · 𝐵 ) ) |
7 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
8 |
1 7
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
9 |
8
|
zcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
10 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
11 |
9 10
|
pncand |
⊢ ( 𝜑 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
12 |
11
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) = ( 𝑀 ... 𝑁 ) ) |
13 |
12
|
prodeq1d |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) 𝐴 = ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 ) |
14 |
13
|
oveq1d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ ( 𝑀 ... ( ( 𝑁 + 1 ) − 1 ) ) 𝐴 · 𝐵 ) = ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 · 𝐵 ) ) |
15 |
6 14
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝑀 ... ( 𝑁 + 1 ) ) 𝐴 = ( ∏ 𝑘 ∈ ( 𝑀 ... 𝑁 ) 𝐴 · 𝐵 ) ) |