| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodp1.1 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 2 |  | fprodp1.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 3 |  | fprodp1.3 | ⊢ ( 𝑘  =  ( 𝑁  +  1 )  →  𝐴  =  𝐵 ) | 
						
							| 4 |  | peano2uz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 5 | 1 4 | syl | ⊢ ( 𝜑  →  ( 𝑁  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 6 | 5 2 3 | fprodm1 | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) 𝐴  =  ( ∏ 𝑘  ∈  ( 𝑀 ... ( ( 𝑁  +  1 )  −  1 ) ) 𝐴  ·  𝐵 ) ) | 
						
							| 7 |  | eluzelz | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ℤ ) | 
						
							| 8 | 1 7 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 9 | 8 | zcnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 10 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 11 | 9 10 | pncand | ⊢ ( 𝜑  →  ( ( 𝑁  +  1 )  −  1 )  =  𝑁 ) | 
						
							| 12 | 11 | oveq2d | ⊢ ( 𝜑  →  ( 𝑀 ... ( ( 𝑁  +  1 )  −  1 ) )  =  ( 𝑀 ... 𝑁 ) ) | 
						
							| 13 | 12 | prodeq1d | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝑀 ... ( ( 𝑁  +  1 )  −  1 ) ) 𝐴  =  ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴 ) | 
						
							| 14 | 13 | oveq1d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  ( 𝑀 ... ( ( 𝑁  +  1 )  −  1 ) ) 𝐴  ·  𝐵 )  =  ( ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  ·  𝐵 ) ) | 
						
							| 15 | 6 14 | eqtrd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) 𝐴  =  ( ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  ·  𝐵 ) ) |