| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodp1s.1 | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 2 |  | fprodp1s.2 | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 3 | 2 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) 𝐴  ∈  ℂ ) | 
						
							| 4 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑚  /  𝑘 ⦌ 𝐴 | 
						
							| 5 | 4 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑚  /  𝑘 ⦌ 𝐴  ∈  ℂ | 
						
							| 6 |  | csbeq1a | ⊢ ( 𝑘  =  𝑚  →  𝐴  =  ⦋ 𝑚  /  𝑘 ⦌ 𝐴 ) | 
						
							| 7 | 6 | eleq1d | ⊢ ( 𝑘  =  𝑚  →  ( 𝐴  ∈  ℂ  ↔  ⦋ 𝑚  /  𝑘 ⦌ 𝐴  ∈  ℂ ) ) | 
						
							| 8 | 5 7 | rspc | ⊢ ( 𝑚  ∈  ( 𝑀 ... ( 𝑁  +  1 ) )  →  ( ∀ 𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) 𝐴  ∈  ℂ  →  ⦋ 𝑚  /  𝑘 ⦌ 𝐴  ∈  ℂ ) ) | 
						
							| 9 | 3 8 | mpan9 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) )  →  ⦋ 𝑚  /  𝑘 ⦌ 𝐴  ∈  ℂ ) | 
						
							| 10 |  | csbeq1 | ⊢ ( 𝑚  =  ( 𝑁  +  1 )  →  ⦋ 𝑚  /  𝑘 ⦌ 𝐴  =  ⦋ ( 𝑁  +  1 )  /  𝑘 ⦌ 𝐴 ) | 
						
							| 11 | 1 9 10 | fprodp1 | ⊢ ( 𝜑  →  ∏ 𝑚  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ⦋ 𝑚  /  𝑘 ⦌ 𝐴  =  ( ∏ 𝑚  ∈  ( 𝑀 ... 𝑁 ) ⦋ 𝑚  /  𝑘 ⦌ 𝐴  ·  ⦋ ( 𝑁  +  1 )  /  𝑘 ⦌ 𝐴 ) ) | 
						
							| 12 |  | nfcv | ⊢ Ⅎ 𝑚 𝐴 | 
						
							| 13 | 12 4 6 | cbvprodi | ⊢ ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) 𝐴  =  ∏ 𝑚  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) ⦋ 𝑚  /  𝑘 ⦌ 𝐴 | 
						
							| 14 | 12 4 6 | cbvprodi | ⊢ ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  =  ∏ 𝑚  ∈  ( 𝑀 ... 𝑁 ) ⦋ 𝑚  /  𝑘 ⦌ 𝐴 | 
						
							| 15 | 14 | oveq1i | ⊢ ( ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  ·  ⦋ ( 𝑁  +  1 )  /  𝑘 ⦌ 𝐴 )  =  ( ∏ 𝑚  ∈  ( 𝑀 ... 𝑁 ) ⦋ 𝑚  /  𝑘 ⦌ 𝐴  ·  ⦋ ( 𝑁  +  1 )  /  𝑘 ⦌ 𝐴 ) | 
						
							| 16 | 11 13 15 | 3eqtr4g | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝑀 ... ( 𝑁  +  1 ) ) 𝐴  =  ( ∏ 𝑘  ∈  ( 𝑀 ... 𝑁 ) 𝐴  ·  ⦋ ( 𝑁  +  1 )  /  𝑘 ⦌ 𝐴 ) ) |