Metamath Proof Explorer


Theorem fprodrecl

Description: Closure of a finite product of real numbers. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcl.1 ( 𝜑𝐴 ∈ Fin )
fprodrecl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ )
Assertion fprodrecl ( 𝜑 → ∏ 𝑘𝐴 𝐵 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 fprodcl.1 ( 𝜑𝐴 ∈ Fin )
2 fprodrecl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ )
3 ax-resscn ℝ ⊆ ℂ
4 3 a1i ( 𝜑 → ℝ ⊆ ℂ )
5 remulcl ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 · 𝑦 ) ∈ ℝ )
6 5 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ )
7 1red ( 𝜑 → 1 ∈ ℝ )
8 4 6 1 2 7 fprodcllem ( 𝜑 → ∏ 𝑘𝐴 𝐵 ∈ ℝ )