Metamath Proof Explorer


Theorem fprodrpcl

Description: Closure of a finite product of positive reals. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcl.1 ( 𝜑𝐴 ∈ Fin )
fprodrpcl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ+ )
Assertion fprodrpcl ( 𝜑 → ∏ 𝑘𝐴 𝐵 ∈ ℝ+ )

Proof

Step Hyp Ref Expression
1 fprodcl.1 ( 𝜑𝐴 ∈ Fin )
2 fprodrpcl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ+ )
3 rpssre + ⊆ ℝ
4 ax-resscn ℝ ⊆ ℂ
5 3 4 sstri + ⊆ ℂ
6 5 a1i ( 𝜑 → ℝ+ ⊆ ℂ )
7 rpmulcl ( ( 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ ) → ( 𝑥 · 𝑦 ) ∈ ℝ+ )
8 7 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ+ )
9 1rp 1 ∈ ℝ+
10 9 a1i ( 𝜑 → 1 ∈ ℝ+ )
11 6 8 1 2 10 fprodcllem ( 𝜑 → ∏ 𝑘𝐴 𝐵 ∈ ℝ+ )