Description: Closure of a finite product of positive reals. (Contributed by Scott Fenton, 14-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fprodcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
fprodrpcl.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ+ ) | ||
Assertion | fprodrpcl | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ+ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
2 | fprodrpcl.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ+ ) | |
3 | rpssre | ⊢ ℝ+ ⊆ ℝ | |
4 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
5 | 3 4 | sstri | ⊢ ℝ+ ⊆ ℂ |
6 | 5 | a1i | ⊢ ( 𝜑 → ℝ+ ⊆ ℂ ) |
7 | rpmulcl | ⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) → ( 𝑥 · 𝑦 ) ∈ ℝ+ ) | |
8 | 7 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 𝑦 ∈ ℝ+ ) ) → ( 𝑥 · 𝑦 ) ∈ ℝ+ ) |
9 | 1rp | ⊢ 1 ∈ ℝ+ | |
10 | 9 | a1i | ⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
11 | 6 8 1 2 10 | fprodcllem | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℝ+ ) |