| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodsplit1f.kph | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | fprodsplit1f.fk | ⊢ ( 𝜑  →  Ⅎ 𝑘 𝐷 ) | 
						
							| 3 |  | fprodsplit1f.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 4 |  | fprodsplit1f.b | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ ) | 
						
							| 5 |  | fprodsplit1f.c | ⊢ ( 𝜑  →  𝐶  ∈  𝐴 ) | 
						
							| 6 |  | fprodsplit1f.d | ⊢ ( ( 𝜑  ∧  𝑘  =  𝐶 )  →  𝐵  =  𝐷 ) | 
						
							| 7 |  | disjdif | ⊢ ( { 𝐶 }  ∩  ( 𝐴  ∖  { 𝐶 } ) )  =  ∅ | 
						
							| 8 | 7 | a1i | ⊢ ( 𝜑  →  ( { 𝐶 }  ∩  ( 𝐴  ∖  { 𝐶 } ) )  =  ∅ ) | 
						
							| 9 | 5 | snssd | ⊢ ( 𝜑  →  { 𝐶 }  ⊆  𝐴 ) | 
						
							| 10 |  | undif | ⊢ ( { 𝐶 }  ⊆  𝐴  ↔  ( { 𝐶 }  ∪  ( 𝐴  ∖  { 𝐶 } ) )  =  𝐴 ) | 
						
							| 11 | 9 10 | sylib | ⊢ ( 𝜑  →  ( { 𝐶 }  ∪  ( 𝐴  ∖  { 𝐶 } ) )  =  𝐴 ) | 
						
							| 12 | 11 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  ( { 𝐶 }  ∪  ( 𝐴  ∖  { 𝐶 } ) ) ) | 
						
							| 13 | 1 8 12 3 4 | fprodsplitf | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ( ∏ 𝑘  ∈  { 𝐶 } 𝐵  ·  ∏ 𝑘  ∈  ( 𝐴  ∖  { 𝐶 } ) 𝐵 ) ) | 
						
							| 14 | 5 | ancli | ⊢ ( 𝜑  →  ( 𝜑  ∧  𝐶  ∈  𝐴 ) ) | 
						
							| 15 |  | nfv | ⊢ Ⅎ 𝑘 𝐶  ∈  𝐴 | 
						
							| 16 | 1 15 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝐶  ∈  𝐴 ) | 
						
							| 17 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝐶  /  𝑘 ⦌ 𝐵 | 
						
							| 18 | 17 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝐶  /  𝑘 ⦌ 𝐵  ∈  ℂ | 
						
							| 19 | 16 18 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝐶  ∈  𝐴 )  →  ⦋ 𝐶  /  𝑘 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 20 |  | eleq1 | ⊢ ( 𝑘  =  𝐶  →  ( 𝑘  ∈  𝐴  ↔  𝐶  ∈  𝐴 ) ) | 
						
							| 21 | 20 | anbi2d | ⊢ ( 𝑘  =  𝐶  →  ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  ↔  ( 𝜑  ∧  𝐶  ∈  𝐴 ) ) ) | 
						
							| 22 |  | csbeq1a | ⊢ ( 𝑘  =  𝐶  →  𝐵  =  ⦋ 𝐶  /  𝑘 ⦌ 𝐵 ) | 
						
							| 23 | 22 | eleq1d | ⊢ ( 𝑘  =  𝐶  →  ( 𝐵  ∈  ℂ  ↔  ⦋ 𝐶  /  𝑘 ⦌ 𝐵  ∈  ℂ ) ) | 
						
							| 24 | 21 23 | imbi12d | ⊢ ( 𝑘  =  𝐶  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐵  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝐶  ∈  𝐴 )  →  ⦋ 𝐶  /  𝑘 ⦌ 𝐵  ∈  ℂ ) ) ) | 
						
							| 25 | 19 24 4 | vtoclg1f | ⊢ ( 𝐶  ∈  𝐴  →  ( ( 𝜑  ∧  𝐶  ∈  𝐴 )  →  ⦋ 𝐶  /  𝑘 ⦌ 𝐵  ∈  ℂ ) ) | 
						
							| 26 | 5 14 25 | sylc | ⊢ ( 𝜑  →  ⦋ 𝐶  /  𝑘 ⦌ 𝐵  ∈  ℂ ) | 
						
							| 27 |  | prodsns | ⊢ ( ( 𝐶  ∈  𝐴  ∧  ⦋ 𝐶  /  𝑘 ⦌ 𝐵  ∈  ℂ )  →  ∏ 𝑘  ∈  { 𝐶 } 𝐵  =  ⦋ 𝐶  /  𝑘 ⦌ 𝐵 ) | 
						
							| 28 | 5 26 27 | syl2anc | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  { 𝐶 } 𝐵  =  ⦋ 𝐶  /  𝑘 ⦌ 𝐵 ) | 
						
							| 29 | 1 2 5 6 | csbiedf | ⊢ ( 𝜑  →  ⦋ 𝐶  /  𝑘 ⦌ 𝐵  =  𝐷 ) | 
						
							| 30 | 28 29 | eqtrd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  { 𝐶 } 𝐵  =  𝐷 ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  { 𝐶 } 𝐵  ·  ∏ 𝑘  ∈  ( 𝐴  ∖  { 𝐶 } ) 𝐵 )  =  ( 𝐷  ·  ∏ 𝑘  ∈  ( 𝐴  ∖  { 𝐶 } ) 𝐵 ) ) | 
						
							| 32 | 13 31 | eqtrd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝐴 𝐵  =  ( 𝐷  ·  ∏ 𝑘  ∈  ( 𝐴  ∖  { 𝐶 } ) 𝐵 ) ) |