| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodsplitf.kph | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | fprodsplitf.in | ⊢ ( 𝜑  →  ( 𝐴  ∩  𝐵 )  =  ∅ ) | 
						
							| 3 |  | fprodsplitf.un | ⊢ ( 𝜑  →  𝑈  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 4 |  | fprodsplitf.fi | ⊢ ( 𝜑  →  𝑈  ∈  Fin ) | 
						
							| 5 |  | fprodsplitf.c | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑈 )  →  𝐶  ∈  ℂ ) | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑘 𝑗  ∈  𝑈 | 
						
							| 7 | 1 6 | nfan | ⊢ Ⅎ 𝑘 ( 𝜑  ∧  𝑗  ∈  𝑈 ) | 
						
							| 8 |  | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐶 | 
						
							| 9 | 8 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ℂ | 
						
							| 10 | 7 9 | nfim | ⊢ Ⅎ 𝑘 ( ( 𝜑  ∧  𝑗  ∈  𝑈 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 11 |  | eleq1w | ⊢ ( 𝑘  =  𝑗  →  ( 𝑘  ∈  𝑈  ↔  𝑗  ∈  𝑈 ) ) | 
						
							| 12 | 11 | anbi2d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝜑  ∧  𝑘  ∈  𝑈 )  ↔  ( 𝜑  ∧  𝑗  ∈  𝑈 ) ) ) | 
						
							| 13 |  | csbeq1a | ⊢ ( 𝑘  =  𝑗  →  𝐶  =  ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) | 
						
							| 14 | 13 | eleq1d | ⊢ ( 𝑘  =  𝑗  →  ( 𝐶  ∈  ℂ  ↔  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ℂ ) ) | 
						
							| 15 | 12 14 | imbi12d | ⊢ ( 𝑘  =  𝑗  →  ( ( ( 𝜑  ∧  𝑘  ∈  𝑈 )  →  𝐶  ∈  ℂ )  ↔  ( ( 𝜑  ∧  𝑗  ∈  𝑈 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ℂ ) ) ) | 
						
							| 16 | 10 15 5 | chvarfv | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑈 )  →  ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ∈  ℂ ) | 
						
							| 17 | 2 3 4 16 | fprodsplit | ⊢ ( 𝜑  →  ∏ 𝑗  ∈  𝑈 ⦋ 𝑗  /  𝑘 ⦌ 𝐶  =  ( ∏ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ·  ∏ 𝑗  ∈  𝐵 ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) ) | 
						
							| 18 |  | nfcv | ⊢ Ⅎ 𝑗 𝐶 | 
						
							| 19 | 18 8 13 | cbvprodi | ⊢ ∏ 𝑘  ∈  𝑈 𝐶  =  ∏ 𝑗  ∈  𝑈 ⦋ 𝑗  /  𝑘 ⦌ 𝐶 | 
						
							| 20 | 18 8 13 | cbvprodi | ⊢ ∏ 𝑘  ∈  𝐴 𝐶  =  ∏ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐶 | 
						
							| 21 | 18 8 13 | cbvprodi | ⊢ ∏ 𝑘  ∈  𝐵 𝐶  =  ∏ 𝑗  ∈  𝐵 ⦋ 𝑗  /  𝑘 ⦌ 𝐶 | 
						
							| 22 | 20 21 | oveq12i | ⊢ ( ∏ 𝑘  ∈  𝐴 𝐶  ·  ∏ 𝑘  ∈  𝐵 𝐶 )  =  ( ∏ 𝑗  ∈  𝐴 ⦋ 𝑗  /  𝑘 ⦌ 𝐶  ·  ∏ 𝑗  ∈  𝐵 ⦋ 𝑗  /  𝑘 ⦌ 𝐶 ) | 
						
							| 23 | 17 19 22 | 3eqtr4g | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  𝑈 𝐶  =  ( ∏ 𝑘  ∈  𝐴 𝐶  ·  ∏ 𝑘  ∈  𝐵 𝐶 ) ) |