Step |
Hyp |
Ref |
Expression |
1 |
|
fprodsplitf.kph |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
fprodsplitf.in |
⊢ ( 𝜑 → ( 𝐴 ∩ 𝐵 ) = ∅ ) |
3 |
|
fprodsplitf.un |
⊢ ( 𝜑 → 𝑈 = ( 𝐴 ∪ 𝐵 ) ) |
4 |
|
fprodsplitf.fi |
⊢ ( 𝜑 → 𝑈 ∈ Fin ) |
5 |
|
fprodsplitf.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) |
6 |
|
nfv |
⊢ Ⅎ 𝑘 𝑗 ∈ 𝑈 |
7 |
1 6
|
nfan |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ 𝑈 ) |
8 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 |
9 |
8
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ |
10 |
7 9
|
nfim |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑗 ∈ 𝑈 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
11 |
|
eleq1w |
⊢ ( 𝑘 = 𝑗 → ( 𝑘 ∈ 𝑈 ↔ 𝑗 ∈ 𝑈 ) ) |
12 |
11
|
anbi2d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) ↔ ( 𝜑 ∧ 𝑗 ∈ 𝑈 ) ) ) |
13 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑗 → 𝐶 = ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
14 |
13
|
eleq1d |
⊢ ( 𝑘 = 𝑗 → ( 𝐶 ∈ ℂ ↔ ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) |
15 |
12 14
|
imbi12d |
⊢ ( 𝑘 = 𝑗 → ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑈 ) → 𝐶 ∈ ℂ ) ↔ ( ( 𝜑 ∧ 𝑗 ∈ 𝑈 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) ) ) |
16 |
10 15 5
|
chvarfv |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑈 ) → ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ∈ ℂ ) |
17 |
2 3 4 16
|
fprodsplit |
⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝑈 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 = ( ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 · ∏ 𝑗 ∈ 𝐵 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐶 |
19 |
18 8 13
|
cbvprodi |
⊢ ∏ 𝑘 ∈ 𝑈 𝐶 = ∏ 𝑗 ∈ 𝑈 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 |
20 |
18 8 13
|
cbvprodi |
⊢ ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 |
21 |
18 8 13
|
cbvprodi |
⊢ ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑗 ∈ 𝐵 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 |
22 |
20 21
|
oveq12i |
⊢ ( ∏ 𝑘 ∈ 𝐴 𝐶 · ∏ 𝑘 ∈ 𝐵 𝐶 ) = ( ∏ 𝑗 ∈ 𝐴 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 · ∏ 𝑗 ∈ 𝐵 ⦋ 𝑗 / 𝑘 ⦌ 𝐶 ) |
23 |
17 19 22
|
3eqtr4g |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝑈 𝐶 = ( ∏ 𝑘 ∈ 𝐴 𝐶 · ∏ 𝑘 ∈ 𝐵 𝐶 ) ) |