| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprodsplitsn.ph | ⊢ Ⅎ 𝑘 𝜑 | 
						
							| 2 |  | fprodsplitsn.kd | ⊢ Ⅎ 𝑘 𝐷 | 
						
							| 3 |  | fprodsplitsn.a | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 4 |  | fprodsplitsn.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 5 |  | fprodsplitsn.ba | ⊢ ( 𝜑  →  ¬  𝐵  ∈  𝐴 ) | 
						
							| 6 |  | fprodsplitsn.c | ⊢ ( ( 𝜑  ∧  𝑘  ∈  𝐴 )  →  𝐶  ∈  ℂ ) | 
						
							| 7 |  | fprodsplitsn.d | ⊢ ( 𝑘  =  𝐵  →  𝐶  =  𝐷 ) | 
						
							| 8 |  | fprodsplitsn.dcn | ⊢ ( 𝜑  →  𝐷  ∈  ℂ ) | 
						
							| 9 |  | disjsn | ⊢ ( ( 𝐴  ∩  { 𝐵 } )  =  ∅  ↔  ¬  𝐵  ∈  𝐴 ) | 
						
							| 10 | 5 9 | sylibr | ⊢ ( 𝜑  →  ( 𝐴  ∩  { 𝐵 } )  =  ∅ ) | 
						
							| 11 |  | eqidd | ⊢ ( 𝜑  →  ( 𝐴  ∪  { 𝐵 } )  =  ( 𝐴  ∪  { 𝐵 } ) ) | 
						
							| 12 |  | snfi | ⊢ { 𝐵 }  ∈  Fin | 
						
							| 13 |  | unfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  { 𝐵 }  ∈  Fin )  →  ( 𝐴  ∪  { 𝐵 } )  ∈  Fin ) | 
						
							| 14 | 3 12 13 | sylancl | ⊢ ( 𝜑  →  ( 𝐴  ∪  { 𝐵 } )  ∈  Fin ) | 
						
							| 15 | 6 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∪  { 𝐵 } ) )  ∧  𝑘  ∈  𝐴 )  →  𝐶  ∈  ℂ ) | 
						
							| 16 |  | elunnel1 | ⊢ ( ( 𝑘  ∈  ( 𝐴  ∪  { 𝐵 } )  ∧  ¬  𝑘  ∈  𝐴 )  →  𝑘  ∈  { 𝐵 } ) | 
						
							| 17 |  | elsni | ⊢ ( 𝑘  ∈  { 𝐵 }  →  𝑘  =  𝐵 ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( 𝑘  ∈  ( 𝐴  ∪  { 𝐵 } )  ∧  ¬  𝑘  ∈  𝐴 )  →  𝑘  =  𝐵 ) | 
						
							| 19 | 18 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∪  { 𝐵 } ) )  ∧  ¬  𝑘  ∈  𝐴 )  →  𝑘  =  𝐵 ) | 
						
							| 20 | 19 7 | syl | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∪  { 𝐵 } ) )  ∧  ¬  𝑘  ∈  𝐴 )  →  𝐶  =  𝐷 ) | 
						
							| 21 | 8 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∪  { 𝐵 } ) )  ∧  ¬  𝑘  ∈  𝐴 )  →  𝐷  ∈  ℂ ) | 
						
							| 22 | 20 21 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∪  { 𝐵 } ) )  ∧  ¬  𝑘  ∈  𝐴 )  →  𝐶  ∈  ℂ ) | 
						
							| 23 | 15 22 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑘  ∈  ( 𝐴  ∪  { 𝐵 } ) )  →  𝐶  ∈  ℂ ) | 
						
							| 24 | 1 10 11 14 23 | fprodsplitf | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝐴  ∪  { 𝐵 } ) 𝐶  =  ( ∏ 𝑘  ∈  𝐴 𝐶  ·  ∏ 𝑘  ∈  { 𝐵 } 𝐶 ) ) | 
						
							| 25 | 2 7 | prodsnf | ⊢ ( ( 𝐵  ∈  𝑉  ∧  𝐷  ∈  ℂ )  →  ∏ 𝑘  ∈  { 𝐵 } 𝐶  =  𝐷 ) | 
						
							| 26 | 4 8 25 | syl2anc | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  { 𝐵 } 𝐶  =  𝐷 ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( 𝜑  →  ( ∏ 𝑘  ∈  𝐴 𝐶  ·  ∏ 𝑘  ∈  { 𝐵 } 𝐶 )  =  ( ∏ 𝑘  ∈  𝐴 𝐶  ·  𝐷 ) ) | 
						
							| 28 | 24 27 | eqtrd | ⊢ ( 𝜑  →  ∏ 𝑘  ∈  ( 𝐴  ∪  { 𝐵 } ) 𝐶  =  ( ∏ 𝑘  ∈  𝐴 𝐶  ·  𝐷 ) ) |