Step |
Hyp |
Ref |
Expression |
1 |
|
fprodsplitsn.ph |
⊢ Ⅎ 𝑘 𝜑 |
2 |
|
fprodsplitsn.kd |
⊢ Ⅎ 𝑘 𝐷 |
3 |
|
fprodsplitsn.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
4 |
|
fprodsplitsn.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
5 |
|
fprodsplitsn.ba |
⊢ ( 𝜑 → ¬ 𝐵 ∈ 𝐴 ) |
6 |
|
fprodsplitsn.c |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
7 |
|
fprodsplitsn.d |
⊢ ( 𝑘 = 𝐵 → 𝐶 = 𝐷 ) |
8 |
|
fprodsplitsn.dcn |
⊢ ( 𝜑 → 𝐷 ∈ ℂ ) |
9 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { 𝐵 } ) = ∅ ↔ ¬ 𝐵 ∈ 𝐴 ) |
10 |
5 9
|
sylibr |
⊢ ( 𝜑 → ( 𝐴 ∩ { 𝐵 } ) = ∅ ) |
11 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) = ( 𝐴 ∪ { 𝐵 } ) ) |
12 |
|
snfi |
⊢ { 𝐵 } ∈ Fin |
13 |
|
unfi |
⊢ ( ( 𝐴 ∈ Fin ∧ { 𝐵 } ∈ Fin ) → ( 𝐴 ∪ { 𝐵 } ) ∈ Fin ) |
14 |
3 12 13
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) ∈ Fin ) |
15 |
6
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
16 |
|
elunnel1 |
⊢ ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ∧ ¬ 𝑘 ∈ 𝐴 ) → 𝑘 ∈ { 𝐵 } ) |
17 |
|
elsni |
⊢ ( 𝑘 ∈ { 𝐵 } → 𝑘 = 𝐵 ) |
18 |
16 17
|
syl |
⊢ ( ( 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ∧ ¬ 𝑘 ∈ 𝐴 ) → 𝑘 = 𝐵 ) |
19 |
18
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑘 ∈ 𝐴 ) → 𝑘 = 𝐵 ) |
20 |
19 7
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑘 ∈ 𝐴 ) → 𝐶 = 𝐷 ) |
21 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑘 ∈ 𝐴 ) → 𝐷 ∈ ℂ ) |
22 |
20 21
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ) ∧ ¬ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
23 |
15 22
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → 𝐶 ∈ ℂ ) |
24 |
1 10 11 14 23
|
fprodsplitf |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝐶 = ( ∏ 𝑘 ∈ 𝐴 𝐶 · ∏ 𝑘 ∈ { 𝐵 } 𝐶 ) ) |
25 |
2 7
|
prodsnf |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ ℂ ) → ∏ 𝑘 ∈ { 𝐵 } 𝐶 = 𝐷 ) |
26 |
4 8 25
|
syl2anc |
⊢ ( 𝜑 → ∏ 𝑘 ∈ { 𝐵 } 𝐶 = 𝐷 ) |
27 |
26
|
oveq2d |
⊢ ( 𝜑 → ( ∏ 𝑘 ∈ 𝐴 𝐶 · ∏ 𝑘 ∈ { 𝐵 } 𝐶 ) = ( ∏ 𝑘 ∈ 𝐴 𝐶 · 𝐷 ) ) |
28 |
24 27
|
eqtrd |
⊢ ( 𝜑 → ∏ 𝑘 ∈ ( 𝐴 ∪ { 𝐵 } ) 𝐶 = ( ∏ 𝑘 ∈ 𝐴 𝐶 · 𝐷 ) ) |