Step |
Hyp |
Ref |
Expression |
1 |
|
fprodss.1 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
2 |
|
fprodss.2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
3 |
|
fprodss.3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 1 ) |
4 |
|
fprodss.4 |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
5 |
|
sseq2 |
⊢ ( 𝐵 = ∅ → ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ ∅ ) ) |
6 |
|
ss0 |
⊢ ( 𝐴 ⊆ ∅ → 𝐴 = ∅ ) |
7 |
5 6
|
syl6bi |
⊢ ( 𝐵 = ∅ → ( 𝐴 ⊆ 𝐵 → 𝐴 = ∅ ) ) |
8 |
|
prodeq1 |
⊢ ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ ∅ 𝐶 ) |
9 |
|
prodeq1 |
⊢ ( 𝐵 = ∅ → ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑘 ∈ ∅ 𝐶 ) |
10 |
9
|
eqcomd |
⊢ ( 𝐵 = ∅ → ∏ 𝑘 ∈ ∅ 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) |
11 |
8 10
|
sylan9eq |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) |
12 |
11
|
expcom |
⊢ ( 𝐵 = ∅ → ( 𝐴 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) ) |
13 |
7 12
|
syld |
⊢ ( 𝐵 = ∅ → ( 𝐴 ⊆ 𝐵 → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) ) |
14 |
1 13
|
syl5com |
⊢ ( 𝜑 → ( 𝐵 = ∅ → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) ) |
15 |
|
cnvimass |
⊢ ( ◡ 𝑓 “ 𝐴 ) ⊆ dom 𝑓 |
16 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) |
17 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) ⟶ 𝐵 ) |
18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) ⟶ 𝐵 ) |
19 |
15 18
|
fssdm |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( ◡ 𝑓 “ 𝐴 ) ⊆ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
20 |
|
f1ofn |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 → 𝑓 Fn ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
21 |
|
elpreima |
⊢ ( 𝑓 Fn ( 1 ... ( ♯ ‘ 𝐵 ) ) → ( 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ↔ ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) ) ) |
22 |
16 20 21
|
3syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ↔ ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) ) ) |
23 |
18
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) |
24 |
23
|
ex |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) ) |
25 |
24
|
adantrd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) ) |
26 |
22 25
|
sylbid |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) ) |
27 |
26
|
imp |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) |
28 |
2
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
30 |
|
eldif |
⊢ ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↔ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) |
31 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
32 |
3 31
|
eqeltrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
33 |
30 32
|
sylan2br |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝐵 ∧ ¬ 𝑘 ∈ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
34 |
33
|
expr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → ( ¬ 𝑘 ∈ 𝐴 → 𝐶 ∈ ℂ ) ) |
35 |
29 34
|
pm2.61d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
36 |
35
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
37 |
36
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) : 𝐵 ⟶ ℂ ) |
38 |
37
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℂ ) |
39 |
27 38
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ ℂ ) |
40 |
|
eqid |
⊢ ( ℤ≥ ‘ 1 ) = ( ℤ≥ ‘ 1 ) |
41 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
42 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
43 |
41 42
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ 1 ) ) |
44 |
|
ssidd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 1 ... ( ♯ ‘ 𝐵 ) ) ⊆ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
45 |
40 43 44
|
fprodntriv |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ∃ 𝑚 ∈ ( ℤ≥ ‘ 1 ) ∃ 𝑦 ( 𝑦 ≠ 0 ∧ seq 𝑚 ( · , ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) ↦ if ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) , ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) , 1 ) ) ) ⇝ 𝑦 ) ) |
46 |
|
eldifi |
⊢ ( 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) → 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
47 |
46 23
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑛 ) ∈ 𝐵 ) |
48 |
|
eldifn |
⊢ ( 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) → ¬ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ) |
49 |
48
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ¬ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ) |
50 |
46
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) |
51 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ↔ ( 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ∧ ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) ) ) |
52 |
50 51
|
mpbirand |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ↔ ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) ) |
53 |
49 52
|
mtbid |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ¬ ( 𝑓 ‘ 𝑛 ) ∈ 𝐴 ) |
54 |
47 53
|
eldifd |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( 𝑓 ‘ 𝑛 ) ∈ ( 𝐵 ∖ 𝐴 ) ) |
55 |
|
difss |
⊢ ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 |
56 |
|
resmpt |
⊢ ( ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ) |
57 |
55 56
|
ax-mp |
⊢ ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) |
58 |
57
|
fveq1i |
⊢ ( ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ ( 𝐵 ∖ 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) |
59 |
|
fvres |
⊢ ( ( 𝑓 ‘ 𝑛 ) ∈ ( 𝐵 ∖ 𝐴 ) → ( ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ ( 𝐵 ∖ 𝐴 ) ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
60 |
58 59
|
eqtr3id |
⊢ ( ( 𝑓 ‘ 𝑛 ) ∈ ( 𝐵 ∖ 𝐴 ) → ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
61 |
54 60
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
62 |
|
1ex |
⊢ 1 ∈ V |
63 |
62
|
elsn2 |
⊢ ( 𝐶 ∈ { 1 } ↔ 𝐶 = 1 ) |
64 |
3 63
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 ∈ { 1 } ) |
65 |
64
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) : ( 𝐵 ∖ 𝐴 ) ⟶ { 1 } ) |
66 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) : ( 𝐵 ∖ 𝐴 ) ⟶ { 1 } ) |
67 |
66 54
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ { 1 } ) |
68 |
|
elsni |
⊢ ( ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ∈ { 1 } → ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) = 1 ) |
69 |
67 68
|
syl |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( ( 𝑘 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) = 1 ) |
70 |
61 69
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ( 1 ... ( ♯ ‘ 𝐵 ) ) ∖ ( ◡ 𝑓 “ 𝐴 ) ) ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) = 1 ) |
71 |
|
fzssuz |
⊢ ( 1 ... ( ♯ ‘ 𝐵 ) ) ⊆ ( ℤ≥ ‘ 1 ) |
72 |
71
|
a1i |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 1 ... ( ♯ ‘ 𝐵 ) ) ⊆ ( ℤ≥ ‘ 1 ) ) |
73 |
19 39 45 70 72
|
prodss |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ∏ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) = ∏ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
74 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → 𝐴 ⊆ 𝐵 ) |
75 |
74
|
resmptd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) = ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ) |
76 |
75
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) ) |
77 |
|
fvres |
⊢ ( 𝑚 ∈ 𝐴 → ( ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ↾ 𝐴 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) |
78 |
76 77
|
sylan9req |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) |
79 |
78
|
prodeq2dv |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) |
80 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑓 ‘ 𝑛 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
81 |
|
fzfid |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 1 ... ( ♯ ‘ 𝐵 ) ) ∈ Fin ) |
82 |
81 18
|
fisuppfi |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( ◡ 𝑓 “ 𝐴 ) ∈ Fin ) |
83 |
|
f1of1 |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1→ 𝐵 ) |
84 |
16 83
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1→ 𝐵 ) |
85 |
|
f1ores |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1→ 𝐵 ∧ ( ◡ 𝑓 “ 𝐴 ) ⊆ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) : ( ◡ 𝑓 “ 𝐴 ) –1-1-onto→ ( 𝑓 “ ( ◡ 𝑓 “ 𝐴 ) ) ) |
86 |
84 19 85
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) : ( ◡ 𝑓 “ 𝐴 ) –1-1-onto→ ( 𝑓 “ ( ◡ 𝑓 “ 𝐴 ) ) ) |
87 |
|
f1ofo |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –onto→ 𝐵 ) |
88 |
16 87
|
syl |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –onto→ 𝐵 ) |
89 |
|
foimacnv |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –onto→ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝑓 “ ( ◡ 𝑓 “ 𝐴 ) ) = 𝐴 ) |
90 |
88 74 89
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑓 “ ( ◡ 𝑓 “ 𝐴 ) ) = 𝐴 ) |
91 |
90
|
f1oeq3d |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) : ( ◡ 𝑓 “ 𝐴 ) –1-1-onto→ ( 𝑓 “ ( ◡ 𝑓 “ 𝐴 ) ) ↔ ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) : ( ◡ 𝑓 “ 𝐴 ) –1-1-onto→ 𝐴 ) ) |
92 |
86 91
|
mpbid |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) : ( ◡ 𝑓 “ 𝐴 ) –1-1-onto→ 𝐴 ) |
93 |
|
fvres |
⊢ ( 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) → ( ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑓 ‘ 𝑛 ) ) |
94 |
93
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ) → ( ( 𝑓 ↾ ( ◡ 𝑓 “ 𝐴 ) ) ‘ 𝑛 ) = ( 𝑓 ‘ 𝑛 ) ) |
95 |
74
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → 𝑚 ∈ 𝐵 ) |
96 |
37
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐵 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ∈ ℂ ) |
97 |
95 96
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑚 ∈ 𝐴 ) → ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ∈ ℂ ) |
98 |
80 82 92 94 97
|
fprodf1o |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = ∏ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
99 |
79 98
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ∏ 𝑛 ∈ ( ◡ 𝑓 “ 𝐴 ) ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
100 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ∧ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑛 ) ) |
101 |
80 81 16 100 96
|
fprodf1o |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ∏ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = ∏ 𝑛 ∈ ( 1 ... ( ♯ ‘ 𝐵 ) ) ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ ( 𝑓 ‘ 𝑛 ) ) ) |
102 |
73 99 101
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ∏ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) ) |
103 |
|
prodfc |
⊢ ∏ 𝑚 ∈ 𝐴 ( ( 𝑘 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑚 ) = ∏ 𝑘 ∈ 𝐴 𝐶 |
104 |
|
prodfc |
⊢ ∏ 𝑚 ∈ 𝐵 ( ( 𝑘 ∈ 𝐵 ↦ 𝐶 ) ‘ 𝑚 ) = ∏ 𝑘 ∈ 𝐵 𝐶 |
105 |
102 103 104
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) |
106 |
105
|
expr |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) ) |
107 |
106
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) ) |
108 |
107
|
expimpd |
⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) ) |
109 |
|
fz1f1o |
⊢ ( 𝐵 ∈ Fin → ( 𝐵 = ∅ ∨ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ) |
110 |
4 109
|
syl |
⊢ ( 𝜑 → ( 𝐵 = ∅ ∨ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝐵 ) ) –1-1-onto→ 𝐵 ) ) ) |
111 |
14 108 110
|
mpjaod |
⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐶 ) |