Metamath Proof Explorer


Theorem fprodzcl

Description: Closure of a finite product of integers. (Contributed by Scott Fenton, 14-Dec-2017)

Ref Expression
Hypotheses fprodcl.1 ( 𝜑𝐴 ∈ Fin )
fprodzcl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℤ )
Assertion fprodzcl ( 𝜑 → ∏ 𝑘𝐴 𝐵 ∈ ℤ )

Proof

Step Hyp Ref Expression
1 fprodcl.1 ( 𝜑𝐴 ∈ Fin )
2 fprodzcl.2 ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℤ )
3 zsscn ℤ ⊆ ℂ
4 3 a1i ( 𝜑 → ℤ ⊆ ℂ )
5 zmulcl ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 · 𝑦 ) ∈ ℤ )
6 5 adantl ( ( 𝜑 ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 · 𝑦 ) ∈ ℤ )
7 1zzd ( 𝜑 → 1 ∈ ℤ )
8 4 6 1 2 7 fprodcllem ( 𝜑 → ∏ 𝑘𝐴 𝐵 ∈ ℤ )