Description: Closure of a finite product of integers. (Contributed by Scott Fenton, 14-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fprodcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fprodzcl.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) | ||
| Assertion | fprodzcl | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodcl.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fprodzcl.2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℤ ) | |
| 3 | zsscn | ⊢ ℤ ⊆ ℂ | |
| 4 | 3 | a1i | ⊢ ( 𝜑 → ℤ ⊆ ℂ ) |
| 5 | zmulcl | ⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ) → ( 𝑥 · 𝑦 ) ∈ ℤ ) |
| 7 | 1zzd | ⊢ ( 𝜑 → 1 ∈ ℤ ) | |
| 8 | 4 6 1 2 7 | fprodcllem | ⊢ ( 𝜑 → ∏ 𝑘 ∈ 𝐴 𝐵 ∈ ℤ ) |