Step |
Hyp |
Ref |
Expression |
1 |
|
fpropnf1.f |
⊢ 𝐹 = { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } |
2 |
|
id |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ) |
3 |
2
|
3adant3 |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ) |
5 |
|
id |
⊢ ( 𝑍 ∈ 𝑊 → 𝑍 ∈ 𝑊 ) |
6 |
5 5
|
jca |
⊢ ( 𝑍 ∈ 𝑊 → ( 𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊 ) ) |
7 |
6
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊 ) ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊 ) ) |
9 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → 𝑋 ≠ 𝑌 ) |
10 |
4 8 9
|
3jca |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) ) |
11 |
|
funprg |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → Fun { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ) |
12 |
10 11
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → Fun { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ) |
13 |
1
|
funeqi |
⊢ ( Fun 𝐹 ↔ Fun { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ) |
14 |
12 13
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → Fun 𝐹 ) |
15 |
|
neneq |
⊢ ( 𝑋 ≠ 𝑌 → ¬ 𝑋 = 𝑌 ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ¬ 𝑋 = 𝑌 ) |
17 |
|
fprg |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ) |
18 |
10 17
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ) |
19 |
1
|
eqcomi |
⊢ { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } = 𝐹 |
20 |
19
|
feq1i |
⊢ ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ↔ 𝐹 : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ) |
21 |
18 20
|
sylib |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → 𝐹 : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ) |
22 |
|
df-f1 |
⊢ ( 𝐹 : { 𝑋 , 𝑌 } –1-1→ { 𝑍 , 𝑍 } ↔ ( 𝐹 : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ∧ Fun ◡ 𝐹 ) ) |
23 |
|
dff13 |
⊢ ( 𝐹 : { 𝑋 , 𝑌 } –1-1→ { 𝑍 , 𝑍 } ↔ ( 𝐹 : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ∧ ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
24 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
25 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 𝑦 ↔ 𝑋 = 𝑦 ) ) |
26 |
24 25
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ) ) |
27 |
26
|
ralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ) ) |
28 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑌 → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
29 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 = 𝑦 ↔ 𝑌 = 𝑦 ) ) |
30 |
28 29
|
imbi12d |
⊢ ( 𝑥 = 𝑌 → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ) |
31 |
30
|
ralbidv |
⊢ ( 𝑥 = 𝑌 → ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ) |
32 |
27 31
|
ralprg |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ) ) |
33 |
32
|
3adant3 |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ) ) |
34 |
33
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ) ) |
35 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) |
36 |
35
|
eqeq2d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
37 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝑋 = 𝑦 ↔ 𝑋 = 𝑋 ) ) |
38 |
36 37
|
imbi12d |
⊢ ( 𝑦 = 𝑋 → ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ) ) |
39 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) |
40 |
39
|
eqeq2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) ) |
41 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 = 𝑦 ↔ 𝑋 = 𝑌 ) ) |
42 |
40 41
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) |
43 |
38 42
|
ralprg |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ↔ ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) |
44 |
35
|
eqeq2d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
45 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝑌 = 𝑦 ↔ 𝑌 = 𝑋 ) ) |
46 |
44 45
|
imbi12d |
⊢ ( 𝑦 = 𝑋 → ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ) ) |
47 |
39
|
eqeq2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) ) ) |
48 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑌 = 𝑦 ↔ 𝑌 = 𝑌 ) ) |
49 |
47 48
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) → 𝑌 = 𝑌 ) ) ) |
50 |
46 49
|
ralprg |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ↔ ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) → 𝑌 = 𝑌 ) ) ) ) |
51 |
43 50
|
anbi12d |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ∧ ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) → 𝑌 = 𝑌 ) ) ) ) ) |
52 |
51
|
3adant3 |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ∧ ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) → 𝑌 = 𝑌 ) ) ) ) ) |
53 |
52
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ∧ ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) → 𝑌 = 𝑌 ) ) ) ) ) |
54 |
1
|
fveq1i |
⊢ ( 𝐹 ‘ 𝑋 ) = ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ‘ 𝑋 ) |
55 |
|
3simpb |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ) ) |
56 |
55
|
anim1i |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) ) |
57 |
|
df-3an |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌 ) ↔ ( ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) ) |
58 |
56 57
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌 ) ) |
59 |
|
fvpr1g |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌 ) → ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ‘ 𝑋 ) = 𝑍 ) |
60 |
58 59
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ‘ 𝑋 ) = 𝑍 ) |
61 |
54 60
|
eqtrid |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐹 ‘ 𝑋 ) = 𝑍 ) |
62 |
1
|
fveq1i |
⊢ ( 𝐹 ‘ 𝑌 ) = ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ‘ 𝑌 ) |
63 |
|
3simpc |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) |
64 |
63
|
anim1i |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) ) |
65 |
|
df-3an |
⊢ ( ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌 ) ↔ ( ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) ) |
66 |
64 65
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌 ) ) |
67 |
|
fvpr2g |
⊢ ( ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌 ) → ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ‘ 𝑌 ) = 𝑍 ) |
68 |
66 67
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ‘ 𝑌 ) = 𝑍 ) |
69 |
62 68
|
eqtr2id |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → 𝑍 = ( 𝐹 ‘ 𝑌 ) ) |
70 |
61 69
|
eqtrd |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) |
71 |
|
idd |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 = 𝑌 → 𝑋 = 𝑌 ) ) |
72 |
70 71
|
embantd |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) → 𝑋 = 𝑌 ) ) |
73 |
72
|
adantld |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) → 𝑋 = 𝑌 ) ) |
74 |
73
|
adantrd |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ∧ ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) → 𝑌 = 𝑌 ) ) ) → 𝑋 = 𝑌 ) ) |
75 |
53 74
|
sylbid |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) → 𝑋 = 𝑌 ) ) |
76 |
34 75
|
sylbid |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) → 𝑋 = 𝑌 ) ) |
77 |
76
|
adantld |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ∧ ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → 𝑋 = 𝑌 ) ) |
78 |
23 77
|
syl5bi |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐹 : { 𝑋 , 𝑌 } –1-1→ { 𝑍 , 𝑍 } → 𝑋 = 𝑌 ) ) |
79 |
22 78
|
syl5bir |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ∧ Fun ◡ 𝐹 ) → 𝑋 = 𝑌 ) ) |
80 |
21 79
|
mpand |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( Fun ◡ 𝐹 → 𝑋 = 𝑌 ) ) |
81 |
16 80
|
mtod |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ¬ Fun ◡ 𝐹 ) |
82 |
14 81
|
jca |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( Fun 𝐹 ∧ ¬ Fun ◡ 𝐹 ) ) |