| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fpropnf1.f | ⊢ 𝐹  =  { 〈 𝑋 ,  𝑍 〉 ,  〈 𝑌 ,  𝑍 〉 } | 
						
							| 2 |  | id | ⊢ ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉 )  →  ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉 ) ) | 
						
							| 3 | 2 | 3adant3 | ⊢ ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  →  ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉 ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉 ) ) | 
						
							| 5 |  | id | ⊢ ( 𝑍  ∈  𝑊  →  𝑍  ∈  𝑊 ) | 
						
							| 6 | 5 5 | jca | ⊢ ( 𝑍  ∈  𝑊  →  ( 𝑍  ∈  𝑊  ∧  𝑍  ∈  𝑊 ) ) | 
						
							| 7 | 6 | 3ad2ant3 | ⊢ ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  →  ( 𝑍  ∈  𝑊  ∧  𝑍  ∈  𝑊 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( 𝑍  ∈  𝑊  ∧  𝑍  ∈  𝑊 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  𝑋  ≠  𝑌 ) | 
						
							| 10 | 4 8 9 | 3jca | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝑍  ∈  𝑊  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 ) ) | 
						
							| 11 |  | funprg | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝑍  ∈  𝑊  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  Fun  { 〈 𝑋 ,  𝑍 〉 ,  〈 𝑌 ,  𝑍 〉 } ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  Fun  { 〈 𝑋 ,  𝑍 〉 ,  〈 𝑌 ,  𝑍 〉 } ) | 
						
							| 13 | 1 | funeqi | ⊢ ( Fun  𝐹  ↔  Fun  { 〈 𝑋 ,  𝑍 〉 ,  〈 𝑌 ,  𝑍 〉 } ) | 
						
							| 14 | 12 13 | sylibr | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  Fun  𝐹 ) | 
						
							| 15 |  | neneq | ⊢ ( 𝑋  ≠  𝑌  →  ¬  𝑋  =  𝑌 ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ¬  𝑋  =  𝑌 ) | 
						
							| 17 |  | fprg | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝑍  ∈  𝑊  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  { 〈 𝑋 ,  𝑍 〉 ,  〈 𝑌 ,  𝑍 〉 } : { 𝑋 ,  𝑌 } ⟶ { 𝑍 ,  𝑍 } ) | 
						
							| 18 | 10 17 | syl | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  { 〈 𝑋 ,  𝑍 〉 ,  〈 𝑌 ,  𝑍 〉 } : { 𝑋 ,  𝑌 } ⟶ { 𝑍 ,  𝑍 } ) | 
						
							| 19 | 1 | eqcomi | ⊢ { 〈 𝑋 ,  𝑍 〉 ,  〈 𝑌 ,  𝑍 〉 }  =  𝐹 | 
						
							| 20 | 19 | feq1i | ⊢ ( { 〈 𝑋 ,  𝑍 〉 ,  〈 𝑌 ,  𝑍 〉 } : { 𝑋 ,  𝑌 } ⟶ { 𝑍 ,  𝑍 }  ↔  𝐹 : { 𝑋 ,  𝑌 } ⟶ { 𝑍 ,  𝑍 } ) | 
						
							| 21 | 18 20 | sylib | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  𝐹 : { 𝑋 ,  𝑌 } ⟶ { 𝑍 ,  𝑍 } ) | 
						
							| 22 |  | df-f1 | ⊢ ( 𝐹 : { 𝑋 ,  𝑌 } –1-1→ { 𝑍 ,  𝑍 }  ↔  ( 𝐹 : { 𝑋 ,  𝑌 } ⟶ { 𝑍 ,  𝑍 }  ∧  Fun  ◡ 𝐹 ) ) | 
						
							| 23 |  | dff13 | ⊢ ( 𝐹 : { 𝑋 ,  𝑌 } –1-1→ { 𝑍 ,  𝑍 }  ↔  ( 𝐹 : { 𝑋 ,  𝑌 } ⟶ { 𝑍 ,  𝑍 }  ∧  ∀ 𝑥  ∈  { 𝑋 ,  𝑌 } ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 24 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 25 |  | eqeq1 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑥  =  𝑦  ↔  𝑋  =  𝑦 ) ) | 
						
							| 26 | 24 25 | imbi12d | ⊢ ( 𝑥  =  𝑋  →  ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑋  =  𝑦 ) ) ) | 
						
							| 27 | 26 | ralbidv | ⊢ ( 𝑥  =  𝑋  →  ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑋  =  𝑦 ) ) ) | 
						
							| 28 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑌  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 29 |  | eqeq1 | ⊢ ( 𝑥  =  𝑌  →  ( 𝑥  =  𝑦  ↔  𝑌  =  𝑦 ) ) | 
						
							| 30 | 28 29 | imbi12d | ⊢ ( 𝑥  =  𝑌  →  ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑌  =  𝑦 ) ) ) | 
						
							| 31 | 30 | ralbidv | ⊢ ( 𝑥  =  𝑌  →  ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑌  =  𝑦 ) ) ) | 
						
							| 32 | 27 31 | ralprg | ⊢ ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉 )  →  ( ∀ 𝑥  ∈  { 𝑋 ,  𝑌 } ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑋  =  𝑦 )  ∧  ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑌  =  𝑦 ) ) ) ) | 
						
							| 33 | 32 | 3adant3 | ⊢ ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  →  ( ∀ 𝑥  ∈  { 𝑋 ,  𝑌 } ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑋  =  𝑦 )  ∧  ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑌  =  𝑦 ) ) ) ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( ∀ 𝑥  ∈  { 𝑋 ,  𝑌 } ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑋  =  𝑦 )  ∧  ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑌  =  𝑦 ) ) ) ) | 
						
							| 35 |  | fveq2 | ⊢ ( 𝑦  =  𝑋  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 36 | 35 | eqeq2d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 37 |  | eqeq2 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑋  =  𝑦  ↔  𝑋  =  𝑋 ) ) | 
						
							| 38 | 36 37 | imbi12d | ⊢ ( 𝑦  =  𝑋  →  ( ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑋  =  𝑦 )  ↔  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑋 )  →  𝑋  =  𝑋 ) ) ) | 
						
							| 39 |  | fveq2 | ⊢ ( 𝑦  =  𝑌  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 40 | 39 | eqeq2d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 41 |  | eqeq2 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑋  =  𝑦  ↔  𝑋  =  𝑌 ) ) | 
						
							| 42 | 40 41 | imbi12d | ⊢ ( 𝑦  =  𝑌  →  ( ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑋  =  𝑦 )  ↔  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) | 
						
							| 43 | 38 42 | ralprg | ⊢ ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉 )  →  ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑋  =  𝑦 )  ↔  ( ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑋 )  →  𝑋  =  𝑋 )  ∧  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) ) ) ) | 
						
							| 44 | 35 | eqeq2d | ⊢ ( 𝑦  =  𝑋  →  ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑋 ) ) ) | 
						
							| 45 |  | eqeq2 | ⊢ ( 𝑦  =  𝑋  →  ( 𝑌  =  𝑦  ↔  𝑌  =  𝑋 ) ) | 
						
							| 46 | 44 45 | imbi12d | ⊢ ( 𝑦  =  𝑋  →  ( ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑌  =  𝑦 )  ↔  ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑋 )  →  𝑌  =  𝑋 ) ) ) | 
						
							| 47 | 39 | eqeq2d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑌 ) ) ) | 
						
							| 48 |  | eqeq2 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑌  =  𝑦  ↔  𝑌  =  𝑌 ) ) | 
						
							| 49 | 47 48 | imbi12d | ⊢ ( 𝑦  =  𝑌  →  ( ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑌  =  𝑦 )  ↔  ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑌  =  𝑌 ) ) ) | 
						
							| 50 | 46 49 | ralprg | ⊢ ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉 )  →  ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑌  =  𝑦 )  ↔  ( ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑋 )  →  𝑌  =  𝑋 )  ∧  ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑌  =  𝑌 ) ) ) ) | 
						
							| 51 | 43 50 | anbi12d | ⊢ ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉 )  →  ( ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑋  =  𝑦 )  ∧  ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑌  =  𝑦 ) )  ↔  ( ( ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑋 )  →  𝑋  =  𝑋 )  ∧  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) )  ∧  ( ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑋 )  →  𝑌  =  𝑋 )  ∧  ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑌  =  𝑌 ) ) ) ) ) | 
						
							| 52 | 51 | 3adant3 | ⊢ ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  →  ( ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑋  =  𝑦 )  ∧  ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑌  =  𝑦 ) )  ↔  ( ( ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑋 )  →  𝑋  =  𝑋 )  ∧  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) )  ∧  ( ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑋 )  →  𝑌  =  𝑋 )  ∧  ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑌  =  𝑌 ) ) ) ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑋  =  𝑦 )  ∧  ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑌  =  𝑦 ) )  ↔  ( ( ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑋 )  →  𝑋  =  𝑋 )  ∧  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) )  ∧  ( ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑋 )  →  𝑌  =  𝑋 )  ∧  ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑌  =  𝑌 ) ) ) ) ) | 
						
							| 54 | 1 | fveq1i | ⊢ ( 𝐹 ‘ 𝑋 )  =  ( { 〈 𝑋 ,  𝑍 〉 ,  〈 𝑌 ,  𝑍 〉 } ‘ 𝑋 ) | 
						
							| 55 |  | 3simpb | ⊢ ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  →  ( 𝑋  ∈  𝑈  ∧  𝑍  ∈  𝑊 ) ) | 
						
							| 56 | 55 | anim1i | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝑋  ∈  𝑈  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 ) ) | 
						
							| 57 |  | df-3an | ⊢ ( ( 𝑋  ∈  𝑈  ∧  𝑍  ∈  𝑊  ∧  𝑋  ≠  𝑌 )  ↔  ( ( 𝑋  ∈  𝑈  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 ) ) | 
						
							| 58 | 56 57 | sylibr | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( 𝑋  ∈  𝑈  ∧  𝑍  ∈  𝑊  ∧  𝑋  ≠  𝑌 ) ) | 
						
							| 59 |  | fvpr1g | ⊢ ( ( 𝑋  ∈  𝑈  ∧  𝑍  ∈  𝑊  ∧  𝑋  ≠  𝑌 )  →  ( { 〈 𝑋 ,  𝑍 〉 ,  〈 𝑌 ,  𝑍 〉 } ‘ 𝑋 )  =  𝑍 ) | 
						
							| 60 | 58 59 | syl | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( { 〈 𝑋 ,  𝑍 〉 ,  〈 𝑌 ,  𝑍 〉 } ‘ 𝑋 )  =  𝑍 ) | 
						
							| 61 | 54 60 | eqtrid | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( 𝐹 ‘ 𝑋 )  =  𝑍 ) | 
						
							| 62 | 1 | fveq1i | ⊢ ( 𝐹 ‘ 𝑌 )  =  ( { 〈 𝑋 ,  𝑍 〉 ,  〈 𝑌 ,  𝑍 〉 } ‘ 𝑌 ) | 
						
							| 63 |  | 3simpc | ⊢ ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  →  ( 𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 ) ) | 
						
							| 64 | 63 | anim1i | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 ) ) | 
						
							| 65 |  | df-3an | ⊢ ( ( 𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊  ∧  𝑋  ≠  𝑌 )  ↔  ( ( 𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 ) ) | 
						
							| 66 | 64 65 | sylibr | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( 𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊  ∧  𝑋  ≠  𝑌 ) ) | 
						
							| 67 |  | fvpr2g | ⊢ ( ( 𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊  ∧  𝑋  ≠  𝑌 )  →  ( { 〈 𝑋 ,  𝑍 〉 ,  〈 𝑌 ,  𝑍 〉 } ‘ 𝑌 )  =  𝑍 ) | 
						
							| 68 | 66 67 | syl | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( { 〈 𝑋 ,  𝑍 〉 ,  〈 𝑌 ,  𝑍 〉 } ‘ 𝑌 )  =  𝑍 ) | 
						
							| 69 | 62 68 | eqtr2id | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  𝑍  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 70 | 61 69 | eqtrd | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 ) ) | 
						
							| 71 |  | idd | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( 𝑋  =  𝑌  →  𝑋  =  𝑌 ) ) | 
						
							| 72 | 70 71 | embantd | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 )  →  𝑋  =  𝑌 ) ) | 
						
							| 73 | 72 | adantld | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( ( ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑋 )  →  𝑋  =  𝑋 )  ∧  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) )  →  𝑋  =  𝑌 ) ) | 
						
							| 74 | 73 | adantrd | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( ( ( ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑋 )  →  𝑋  =  𝑋 )  ∧  ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑋  =  𝑌 ) )  ∧  ( ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑋 )  →  𝑌  =  𝑋 )  ∧  ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑌 )  →  𝑌  =  𝑌 ) ) )  →  𝑋  =  𝑌 ) ) | 
						
							| 75 | 53 74 | sylbid | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( ( ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑋 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑋  =  𝑦 )  ∧  ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑌 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑌  =  𝑦 ) )  →  𝑋  =  𝑌 ) ) | 
						
							| 76 | 34 75 | sylbid | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( ∀ 𝑥  ∈  { 𝑋 ,  𝑌 } ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  →  𝑋  =  𝑌 ) ) | 
						
							| 77 | 76 | adantld | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝐹 : { 𝑋 ,  𝑌 } ⟶ { 𝑍 ,  𝑍 }  ∧  ∀ 𝑥  ∈  { 𝑋 ,  𝑌 } ∀ 𝑦  ∈  { 𝑋 ,  𝑌 } ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  →  𝑋  =  𝑌 ) ) | 
						
							| 78 | 23 77 | biimtrid | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( 𝐹 : { 𝑋 ,  𝑌 } –1-1→ { 𝑍 ,  𝑍 }  →  𝑋  =  𝑌 ) ) | 
						
							| 79 | 22 78 | biimtrrid | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝐹 : { 𝑋 ,  𝑌 } ⟶ { 𝑍 ,  𝑍 }  ∧  Fun  ◡ 𝐹 )  →  𝑋  =  𝑌 ) ) | 
						
							| 80 | 21 79 | mpand | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( Fun  ◡ 𝐹  →  𝑋  =  𝑌 ) ) | 
						
							| 81 | 16 80 | mtod | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ¬  Fun  ◡ 𝐹 ) | 
						
							| 82 | 14 81 | jca | ⊢ ( ( ( 𝑋  ∈  𝑈  ∧  𝑌  ∈  𝑉  ∧  𝑍  ∈  𝑊 )  ∧  𝑋  ≠  𝑌 )  →  ( Fun  𝐹  ∧  ¬  Fun  ◡ 𝐹 ) ) |