| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fpropnf1.f |
⊢ 𝐹 = { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } |
| 2 |
|
id |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ) |
| 3 |
2
|
3adant3 |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ) |
| 4 |
3
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ) |
| 5 |
|
id |
⊢ ( 𝑍 ∈ 𝑊 → 𝑍 ∈ 𝑊 ) |
| 6 |
5 5
|
jca |
⊢ ( 𝑍 ∈ 𝑊 → ( 𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊 ) ) |
| 7 |
6
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊 ) ) |
| 9 |
|
simpr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → 𝑋 ≠ 𝑌 ) |
| 10 |
4 8 9
|
3jca |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) ) |
| 11 |
|
funprg |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → Fun { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ) |
| 12 |
10 11
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → Fun { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ) |
| 13 |
1
|
funeqi |
⊢ ( Fun 𝐹 ↔ Fun { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ) |
| 14 |
12 13
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → Fun 𝐹 ) |
| 15 |
|
neneq |
⊢ ( 𝑋 ≠ 𝑌 → ¬ 𝑋 = 𝑌 ) |
| 16 |
15
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ¬ 𝑋 = 𝑌 ) |
| 17 |
|
fprg |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝑍 ∈ 𝑊 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ) |
| 18 |
10 17
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ) |
| 19 |
1
|
eqcomi |
⊢ { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } = 𝐹 |
| 20 |
19
|
feq1i |
⊢ ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ↔ 𝐹 : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ) |
| 21 |
18 20
|
sylib |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → 𝐹 : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ) |
| 22 |
|
df-f1 |
⊢ ( 𝐹 : { 𝑋 , 𝑌 } –1-1→ { 𝑍 , 𝑍 } ↔ ( 𝐹 : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ∧ Fun ◡ 𝐹 ) ) |
| 23 |
|
dff13 |
⊢ ( 𝐹 : { 𝑋 , 𝑌 } –1-1→ { 𝑍 , 𝑍 } ↔ ( 𝐹 : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ∧ ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
| 24 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
| 25 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = 𝑦 ↔ 𝑋 = 𝑦 ) ) |
| 26 |
24 25
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ) ) |
| 27 |
26
|
ralbidv |
⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ) ) |
| 28 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝑌 → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) ) ) |
| 29 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 = 𝑦 ↔ 𝑌 = 𝑦 ) ) |
| 30 |
28 29
|
imbi12d |
⊢ ( 𝑥 = 𝑌 → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ) |
| 31 |
30
|
ralbidv |
⊢ ( 𝑥 = 𝑌 → ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ) |
| 32 |
27 31
|
ralprg |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ) ) |
| 33 |
32
|
3adant3 |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ) ) |
| 34 |
33
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 36 |
35
|
eqeq2d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 37 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝑋 = 𝑦 ↔ 𝑋 = 𝑋 ) ) |
| 38 |
36 37
|
imbi12d |
⊢ ( 𝑦 = 𝑋 → ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ) ) |
| 39 |
|
fveq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 40 |
39
|
eqeq2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 41 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑋 = 𝑦 ↔ 𝑋 = 𝑌 ) ) |
| 42 |
40 41
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) |
| 43 |
38 42
|
ralprg |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ↔ ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) |
| 44 |
35
|
eqeq2d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) ) ) |
| 45 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝑌 = 𝑦 ↔ 𝑌 = 𝑋 ) ) |
| 46 |
44 45
|
imbi12d |
⊢ ( 𝑦 = 𝑋 → ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ) ) |
| 47 |
39
|
eqeq2d |
⊢ ( 𝑦 = 𝑌 → ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) ) ) |
| 48 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑌 → ( 𝑌 = 𝑦 ↔ 𝑌 = 𝑌 ) ) |
| 49 |
47 48
|
imbi12d |
⊢ ( 𝑦 = 𝑌 → ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ↔ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) → 𝑌 = 𝑌 ) ) ) |
| 50 |
46 49
|
ralprg |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ↔ ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) → 𝑌 = 𝑌 ) ) ) ) |
| 51 |
43 50
|
anbi12d |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ∧ ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) → 𝑌 = 𝑌 ) ) ) ) ) |
| 52 |
51
|
3adant3 |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ∧ ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) → 𝑌 = 𝑌 ) ) ) ) ) |
| 53 |
52
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) ↔ ( ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ∧ ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) → 𝑌 = 𝑌 ) ) ) ) ) |
| 54 |
1
|
fveq1i |
⊢ ( 𝐹 ‘ 𝑋 ) = ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ‘ 𝑋 ) |
| 55 |
|
3simpb |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ) ) |
| 56 |
55
|
anim1i |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) ) |
| 57 |
|
df-3an |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌 ) ↔ ( ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) ) |
| 58 |
56 57
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌 ) ) |
| 59 |
|
fvpr1g |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌 ) → ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ‘ 𝑋 ) = 𝑍 ) |
| 60 |
58 59
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ‘ 𝑋 ) = 𝑍 ) |
| 61 |
54 60
|
eqtrid |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐹 ‘ 𝑋 ) = 𝑍 ) |
| 62 |
1
|
fveq1i |
⊢ ( 𝐹 ‘ 𝑌 ) = ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ‘ 𝑌 ) |
| 63 |
|
3simpc |
⊢ ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ) |
| 64 |
63
|
anim1i |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) ) |
| 65 |
|
df-3an |
⊢ ( ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌 ) ↔ ( ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) ) |
| 66 |
64 65
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌 ) ) |
| 67 |
|
fvpr2g |
⊢ ( ( 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ∧ 𝑋 ≠ 𝑌 ) → ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ‘ 𝑌 ) = 𝑍 ) |
| 68 |
66 67
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( { 〈 𝑋 , 𝑍 〉 , 〈 𝑌 , 𝑍 〉 } ‘ 𝑌 ) = 𝑍 ) |
| 69 |
62 68
|
eqtr2id |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → 𝑍 = ( 𝐹 ‘ 𝑌 ) ) |
| 70 |
61 69
|
eqtrd |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) ) |
| 71 |
|
idd |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 = 𝑌 → 𝑋 = 𝑌 ) ) |
| 72 |
70 71
|
embantd |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) → 𝑋 = 𝑌 ) ) |
| 73 |
72
|
adantld |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) → 𝑋 = 𝑌 ) ) |
| 74 |
73
|
adantrd |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ( ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑋 ) → 𝑋 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑌 ) → 𝑋 = 𝑌 ) ) ∧ ( ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑋 ) → 𝑌 = 𝑋 ) ∧ ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑌 ) → 𝑌 = 𝑌 ) ) ) → 𝑋 = 𝑌 ) ) |
| 75 |
53 74
|
sylbid |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑦 ) → 𝑋 = 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑌 ) = ( 𝐹 ‘ 𝑦 ) → 𝑌 = 𝑦 ) ) → 𝑋 = 𝑌 ) ) |
| 76 |
34 75
|
sylbid |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) → 𝑋 = 𝑌 ) ) |
| 77 |
76
|
adantld |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ∧ ∀ 𝑥 ∈ { 𝑋 , 𝑌 } ∀ 𝑦 ∈ { 𝑋 , 𝑌 } ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → 𝑋 = 𝑌 ) ) |
| 78 |
23 77
|
biimtrid |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( 𝐹 : { 𝑋 , 𝑌 } –1-1→ { 𝑍 , 𝑍 } → 𝑋 = 𝑌 ) ) |
| 79 |
22 78
|
biimtrrid |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝐹 : { 𝑋 , 𝑌 } ⟶ { 𝑍 , 𝑍 } ∧ Fun ◡ 𝐹 ) → 𝑋 = 𝑌 ) ) |
| 80 |
21 79
|
mpand |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( Fun ◡ 𝐹 → 𝑋 = 𝑌 ) ) |
| 81 |
16 80
|
mtod |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ¬ Fun ◡ 𝐹 ) |
| 82 |
14 81
|
jca |
⊢ ( ( ( 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) ∧ 𝑋 ≠ 𝑌 ) → ( Fun 𝐹 ∧ ¬ Fun ◡ 𝐹 ) ) |