| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fprfung.1 | ⊢ 𝐹  =  frecs ( 𝑅 ,  𝐴 ,  𝐺 ) | 
						
							| 2 | 1 | fprfung | ⊢ ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  →  Fun  𝐹 ) | 
						
							| 3 |  | funfvop | ⊢ ( ( Fun  𝐹  ∧  𝑋  ∈  dom  𝐹 )  →  〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝐹 ) | 
						
							| 4 | 2 3 | sylan | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  →  〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝐹 ) | 
						
							| 5 |  | df-frecs | ⊢ frecs ( 𝑅 ,  𝐴 ,  𝐺 )  =  ∪  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } | 
						
							| 6 | 1 5 | eqtri | ⊢ 𝐹  =  ∪  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } | 
						
							| 7 | 6 | eleq2i | ⊢ ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝐹  ↔  〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  ∪  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } ) | 
						
							| 8 |  | eluni | ⊢ ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  ∪  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) }  ↔  ∃ 𝑔 ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } ) ) | 
						
							| 9 | 7 8 | bitri | ⊢ ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝐹  ↔  ∃ 𝑔 ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } ) ) | 
						
							| 10 | 4 9 | sylib | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  →  ∃ 𝑔 ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } ) ) | 
						
							| 11 |  | eqid | ⊢ { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) }  =  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } | 
						
							| 12 | 11 | frrlem1 | ⊢ { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) }  =  { 𝑔  ∣  ∃ 𝑧 ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 )  ∧  ∀ 𝑤  ∈  𝑧 ( 𝑔 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) } | 
						
							| 13 | 12 | eqabri | ⊢ ( 𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) }  ↔  ∃ 𝑧 ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 )  ∧  ∀ 𝑤  ∈  𝑧 ( 𝑔 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) ) | 
						
							| 14 | 13 | biimpi | ⊢ ( 𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) }  →  ∃ 𝑧 ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 )  ∧  ∀ 𝑤  ∈  𝑧 ( 𝑔 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  →  ∃ 𝑧 ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 )  ∧  ∀ 𝑤  ∈  𝑧 ( 𝑔 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } ) )  →  ∃ 𝑧 ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 )  ∧  ∀ 𝑤  ∈  𝑧 ( 𝑔 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) ) ) | 
						
							| 17 |  | 3simpa | ⊢ ( ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 )  ∧  ∀ 𝑤  ∈  𝑧 ( 𝑔 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) )  →  ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) ) ) | 
						
							| 18 | 2 | ad2antrr | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  ∧  ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) ) ) )  →  Fun  𝐹 ) | 
						
							| 19 |  | simprlr | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  ∧  ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) ) ) )  →  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } ) | 
						
							| 20 |  | elssuni | ⊢ ( 𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) }  →  𝑔  ⊆  ∪  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  ∧  ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) ) ) )  →  𝑔  ⊆  ∪  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } ) | 
						
							| 22 | 21 6 | sseqtrrdi | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  ∧  ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) ) ) )  →  𝑔  ⊆  𝐹 ) | 
						
							| 23 |  | predeq3 | ⊢ ( 𝑤  =  𝑋  →  Pred ( 𝑅 ,  𝐴 ,  𝑤 )  =  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) | 
						
							| 24 | 23 | sseq1d | ⊢ ( 𝑤  =  𝑋  →  ( Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧  ↔  Pred ( 𝑅 ,  𝐴 ,  𝑋 )  ⊆  𝑧 ) ) | 
						
							| 25 |  | simprrr | ⊢ ( ( ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  ∧  ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) ) )  →  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  ∧  ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) ) ) )  →  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) | 
						
							| 27 |  | simplr | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  ∧  ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) ) ) )  →  𝑋  ∈  dom  𝐹 ) | 
						
							| 28 |  | simprll | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  ∧  ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) ) ) )  →  〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔 ) | 
						
							| 29 |  | df-br | ⊢ ( 𝑋 𝑔 ( 𝐹 ‘ 𝑋 )  ↔  〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔 ) | 
						
							| 30 | 28 29 | sylibr | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  ∧  ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) ) ) )  →  𝑋 𝑔 ( 𝐹 ‘ 𝑋 ) ) | 
						
							| 31 |  | fvex | ⊢ ( 𝐹 ‘ 𝑋 )  ∈  V | 
						
							| 32 |  | breldmg | ⊢ ( ( 𝑋  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑋 )  ∈  V  ∧  𝑋 𝑔 ( 𝐹 ‘ 𝑋 ) )  →  𝑋  ∈  dom  𝑔 ) | 
						
							| 33 | 31 32 | mp3an2 | ⊢ ( ( 𝑋  ∈  dom  𝐹  ∧  𝑋 𝑔 ( 𝐹 ‘ 𝑋 ) )  →  𝑋  ∈  dom  𝑔 ) | 
						
							| 34 | 27 30 33 | syl2anc | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  ∧  ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) ) ) )  →  𝑋  ∈  dom  𝑔 ) | 
						
							| 35 |  | simprrl | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  ∧  ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) ) ) )  →  𝑔  Fn  𝑧 ) | 
						
							| 36 | 35 | fndmd | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  ∧  ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) ) ) )  →  dom  𝑔  =  𝑧 ) | 
						
							| 37 | 34 36 | eleqtrd | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  ∧  ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) ) ) )  →  𝑋  ∈  𝑧 ) | 
						
							| 38 | 24 26 37 | rspcdva | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  ∧  ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) ) ) )  →  Pred ( 𝑅 ,  𝐴 ,  𝑋 )  ⊆  𝑧 ) | 
						
							| 39 | 38 36 | sseqtrrd | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  ∧  ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) ) ) )  →  Pred ( 𝑅 ,  𝐴 ,  𝑋 )  ⊆  dom  𝑔 ) | 
						
							| 40 |  | fun2ssres | ⊢ ( ( Fun  𝐹  ∧  𝑔  ⊆  𝐹  ∧  Pred ( 𝑅 ,  𝐴 ,  𝑋 )  ⊆  dom  𝑔 )  →  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) )  =  ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ) | 
						
							| 41 | 18 22 39 40 | syl3anc | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  ∧  ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) ) ) )  →  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) )  =  ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) ) ) | 
						
							| 42 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 43 | 42 | resex | ⊢ ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) )  ∈  V | 
						
							| 44 | 41 43 | eqeltrdi | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } )  ∧  ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) ) ) )  →  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) )  ∈  V ) | 
						
							| 45 | 44 | expr | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } ) )  →  ( ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 ) )  →  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) )  ∈  V ) ) | 
						
							| 46 | 17 45 | syl5 | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } ) )  →  ( ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 )  ∧  ∀ 𝑤  ∈  𝑧 ( 𝑔 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) )  →  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) )  ∈  V ) ) | 
						
							| 47 | 46 | exlimdv | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } ) )  →  ( ∃ 𝑧 ( 𝑔  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐴  ∧  ∀ 𝑤  ∈  𝑧 Pred ( 𝑅 ,  𝐴 ,  𝑤 )  ⊆  𝑧 )  ∧  ∀ 𝑤  ∈  𝑧 ( 𝑔 ‘ 𝑤 )  =  ( 𝑤 𝐺 ( 𝑔  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑤 ) ) ) )  →  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) )  ∈  V ) ) | 
						
							| 48 | 16 47 | mpd | ⊢ ( ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  ∧  ( 〈 𝑋 ,  ( 𝐹 ‘ 𝑋 ) 〉  ∈  𝑔  ∧  𝑔  ∈  { 𝑓  ∣  ∃ 𝑥 ( 𝑓  Fn  𝑥  ∧  ( 𝑥  ⊆  𝐴  ∧  ∀ 𝑦  ∈  𝑥 Pred ( 𝑅 ,  𝐴 ,  𝑦 )  ⊆  𝑥 )  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐺 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑦 ) ) ) ) } ) )  →  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) )  ∈  V ) | 
						
							| 49 | 10 48 | exlimddv | ⊢ ( ( ( 𝑅  Fr  𝐴  ∧  𝑅  Po  𝐴  ∧  𝑅  Se  𝐴 )  ∧  𝑋  ∈  dom  𝐹 )  →  ( 𝐹  ↾  Pred ( 𝑅 ,  𝐴 ,  𝑋 ) )  ∈  V ) |