Step |
Hyp |
Ref |
Expression |
1 |
|
fpwwe2.1 |
⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } |
2 |
|
fpwwe2.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
fpwwe2.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
4 |
|
fpwwe2.4 |
⊢ 𝑋 = ∪ dom 𝑊 |
5 |
1 2 3 4
|
fpwwe2lem10 |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 ⟶ 𝒫 ( 𝑋 × 𝑋 ) ) |
6 |
5
|
ffund |
⊢ ( 𝜑 → Fun 𝑊 ) |
7 |
|
funbrfv2b |
⊢ ( Fun 𝑊 → ( 𝑌 𝑊 𝑅 ↔ ( 𝑌 ∈ dom 𝑊 ∧ ( 𝑊 ‘ 𝑌 ) = 𝑅 ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝜑 → ( 𝑌 𝑊 𝑅 ↔ ( 𝑌 ∈ dom 𝑊 ∧ ( 𝑊 ‘ 𝑌 ) = 𝑅 ) ) ) |
9 |
8
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝑌 𝑊 𝑅 ) → 𝑌 ∈ dom 𝑊 ) |
10 |
9
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑌 ∈ dom 𝑊 ) |
11 |
|
elssuni |
⊢ ( 𝑌 ∈ dom 𝑊 → 𝑌 ⊆ ∪ dom 𝑊 ) |
12 |
11 4
|
sseqtrrdi |
⊢ ( 𝑌 ∈ dom 𝑊 → 𝑌 ⊆ 𝑋 ) |
13 |
10 12
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑌 ⊆ 𝑋 ) |
14 |
|
simpl |
⊢ ( ( 𝑋 ⊆ 𝑌 ∧ ( 𝑊 ‘ 𝑋 ) = ( 𝑅 ∩ ( 𝑌 × 𝑋 ) ) ) → 𝑋 ⊆ 𝑌 ) |
15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( ( 𝑋 ⊆ 𝑌 ∧ ( 𝑊 ‘ 𝑋 ) = ( 𝑅 ∩ ( 𝑌 × 𝑋 ) ) ) → 𝑋 ⊆ 𝑌 ) ) |
16 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) |
17 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝐴 ∈ 𝑉 ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝐴 ∈ 𝑉 ) |
19 |
1 2 3 4
|
fpwwe2lem11 |
⊢ ( 𝜑 → 𝑋 ∈ dom 𝑊 ) |
20 |
|
funfvbrb |
⊢ ( Fun 𝑊 → ( 𝑋 ∈ dom 𝑊 ↔ 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) ) |
21 |
6 20
|
syl |
⊢ ( 𝜑 → ( 𝑋 ∈ dom 𝑊 ↔ 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) ) |
22 |
19 21
|
mpbid |
⊢ ( 𝜑 → 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) |
23 |
1 2
|
fpwwe2lem2 |
⊢ ( 𝜑 → ( 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ↔ ( ( 𝑋 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( ( 𝑊 ‘ 𝑋 ) We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
24 |
22 23
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑋 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( ( 𝑊 ‘ 𝑋 ) We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
25 |
24
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑋 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( ( 𝑊 ‘ 𝑋 ) We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
26 |
25
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ) |
27 |
26
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝑋 ⊆ 𝐴 ) |
28 |
18 27
|
ssexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝑋 ∈ V ) |
29 |
28
|
difexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋 ∖ 𝑌 ) ∈ V ) |
30 |
25
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑊 ‘ 𝑋 ) We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
31 |
30
|
simpld |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑊 ‘ 𝑋 ) We 𝑋 ) |
32 |
|
wefr |
⊢ ( ( 𝑊 ‘ 𝑋 ) We 𝑋 → ( 𝑊 ‘ 𝑋 ) Fr 𝑋 ) |
33 |
31 32
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑊 ‘ 𝑋 ) Fr 𝑋 ) |
34 |
|
difssd |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋 ∖ 𝑌 ) ⊆ 𝑋 ) |
35 |
|
fri |
⊢ ( ( ( ( 𝑋 ∖ 𝑌 ) ∈ V ∧ ( 𝑊 ‘ 𝑋 ) Fr 𝑋 ) ∧ ( ( 𝑋 ∖ 𝑌 ) ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑌 ) ≠ ∅ ) ) → ∃ 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) |
36 |
35
|
expr |
⊢ ( ( ( ( 𝑋 ∖ 𝑌 ) ∈ V ∧ ( 𝑊 ‘ 𝑋 ) Fr 𝑋 ) ∧ ( 𝑋 ∖ 𝑌 ) ⊆ 𝑋 ) → ( ( 𝑋 ∖ 𝑌 ) ≠ ∅ → ∃ 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) ) |
37 |
29 33 34 36
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑋 ∖ 𝑌 ) ≠ ∅ → ∃ 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) ) |
38 |
|
ssdif0 |
⊢ ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ⊆ 𝑌 ↔ ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ∖ 𝑌 ) = ∅ ) |
39 |
|
indif1 |
⊢ ( ( 𝑋 ∖ 𝑌 ) ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) = ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ∖ 𝑌 ) |
40 |
39
|
eqeq1i |
⊢ ( ( ( 𝑋 ∖ 𝑌 ) ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) = ∅ ↔ ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ∖ 𝑌 ) = ∅ ) |
41 |
|
disj |
⊢ ( ( ( 𝑋 ∖ 𝑌 ) ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) = ∅ ↔ ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) |
42 |
|
vex |
⊢ 𝑤 ∈ V |
43 |
42
|
eliniseg |
⊢ ( 𝑧 ∈ V → ( 𝑤 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ↔ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) ) |
44 |
43
|
elv |
⊢ ( 𝑤 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ↔ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) |
45 |
44
|
notbii |
⊢ ( ¬ 𝑤 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ↔ ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) |
46 |
45
|
ralbii |
⊢ ( ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ↔ ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) |
47 |
41 46
|
bitri |
⊢ ( ( ( 𝑋 ∖ 𝑌 ) ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) = ∅ ↔ ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) |
48 |
38 40 47
|
3bitr2i |
⊢ ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ⊆ 𝑌 ↔ ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) |
49 |
|
cnvimass |
⊢ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ dom ( 𝑊 ‘ 𝑋 ) |
50 |
26
|
simprd |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) |
51 |
|
dmss |
⊢ ( ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) → dom ( 𝑊 ‘ 𝑋 ) ⊆ dom ( 𝑋 × 𝑋 ) ) |
52 |
50 51
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → dom ( 𝑊 ‘ 𝑋 ) ⊆ dom ( 𝑋 × 𝑋 ) ) |
53 |
|
dmxpid |
⊢ dom ( 𝑋 × 𝑋 ) = 𝑋 |
54 |
52 53
|
sseqtrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → dom ( 𝑊 ‘ 𝑋 ) ⊆ 𝑋 ) |
55 |
49 54
|
sstrid |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑋 ) |
56 |
|
sseqin2 |
⊢ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑋 ↔ ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) = ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) |
57 |
55 56
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) = ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) |
58 |
57
|
sseq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ⊆ 𝑌 ↔ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) |
59 |
48 58
|
bitr3id |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ↔ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) |
60 |
59
|
rexbidv |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ∃ 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ↔ ∃ 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) |
61 |
|
eldifn |
⊢ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) → ¬ 𝑧 ∈ 𝑌 ) |
62 |
61
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ¬ 𝑧 ∈ 𝑌 ) |
63 |
|
eleq1w |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ 𝑌 ↔ 𝑧 ∈ 𝑌 ) ) |
64 |
63
|
notbid |
⊢ ( 𝑤 = 𝑧 → ( ¬ 𝑤 ∈ 𝑌 ↔ ¬ 𝑧 ∈ 𝑌 ) ) |
65 |
62 64
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑤 = 𝑧 → ¬ 𝑤 ∈ 𝑌 ) ) |
66 |
65
|
con2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑤 ∈ 𝑌 → ¬ 𝑤 = 𝑧 ) ) |
67 |
66
|
imp |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ¬ 𝑤 = 𝑧 ) |
68 |
62
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ¬ 𝑧 ∈ 𝑌 ) |
69 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) |
70 |
69
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) |
71 |
70
|
breqd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑧 𝑅 𝑤 ↔ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) 𝑤 ) ) |
72 |
|
eldifi |
⊢ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) → 𝑧 ∈ 𝑋 ) |
73 |
72
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑧 ∈ 𝑋 ) |
74 |
73
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → 𝑧 ∈ 𝑋 ) |
75 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → 𝑤 ∈ 𝑌 ) |
76 |
|
brxp |
⊢ ( 𝑧 ( 𝑋 × 𝑌 ) 𝑤 ↔ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑌 ) ) |
77 |
74 75 76
|
sylanbrc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → 𝑧 ( 𝑋 × 𝑌 ) 𝑤 ) |
78 |
|
brin |
⊢ ( 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) 𝑤 ↔ ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ∧ 𝑧 ( 𝑋 × 𝑌 ) 𝑤 ) ) |
79 |
78
|
rbaib |
⊢ ( 𝑧 ( 𝑋 × 𝑌 ) 𝑤 → ( 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) 𝑤 ↔ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ) ) |
80 |
77 79
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) 𝑤 ↔ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ) ) |
81 |
71 80
|
bitrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑧 𝑅 𝑤 ↔ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ) ) |
82 |
1 2
|
fpwwe2lem2 |
⊢ ( 𝜑 → ( 𝑌 𝑊 𝑅 ↔ ( ( 𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑅 We 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
83 |
82
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝑌 𝑊 𝑅 ) → ( ( 𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑅 We 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
84 |
83
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( ( 𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑅 We 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
85 |
84
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( 𝑌 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑌 × 𝑌 ) ) ) |
86 |
85
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑅 ⊆ ( 𝑌 × 𝑌 ) ) |
87 |
86
|
ad5ant12 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → 𝑅 ⊆ ( 𝑌 × 𝑌 ) ) |
88 |
87
|
ssbrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑧 𝑅 𝑤 → 𝑧 ( 𝑌 × 𝑌 ) 𝑤 ) ) |
89 |
|
brxp |
⊢ ( 𝑧 ( 𝑌 × 𝑌 ) 𝑤 ↔ ( 𝑧 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) |
90 |
89
|
simplbi |
⊢ ( 𝑧 ( 𝑌 × 𝑌 ) 𝑤 → 𝑧 ∈ 𝑌 ) |
91 |
88 90
|
syl6 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑧 𝑅 𝑤 → 𝑧 ∈ 𝑌 ) ) |
92 |
81 91
|
sylbird |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 → 𝑧 ∈ 𝑌 ) ) |
93 |
68 92
|
mtod |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ) |
94 |
31
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑊 ‘ 𝑋 ) We 𝑋 ) |
95 |
|
weso |
⊢ ( ( 𝑊 ‘ 𝑋 ) We 𝑋 → ( 𝑊 ‘ 𝑋 ) Or 𝑋 ) |
96 |
94 95
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑊 ‘ 𝑋 ) Or 𝑋 ) |
97 |
13
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑌 ⊆ 𝑋 ) |
98 |
97
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → 𝑤 ∈ 𝑋 ) |
99 |
|
sotric |
⊢ ( ( ( 𝑊 ‘ 𝑋 ) Or 𝑋 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ↔ ¬ ( 𝑤 = 𝑧 ∨ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ) ) ) |
100 |
|
ioran |
⊢ ( ¬ ( 𝑤 = 𝑧 ∨ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ) ↔ ( ¬ 𝑤 = 𝑧 ∧ ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ) ) |
101 |
99 100
|
bitrdi |
⊢ ( ( ( 𝑊 ‘ 𝑋 ) Or 𝑋 ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) ) → ( 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ↔ ( ¬ 𝑤 = 𝑧 ∧ ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ) ) ) |
102 |
96 98 74 101
|
syl12anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → ( 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ↔ ( ¬ 𝑤 = 𝑧 ∧ ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑤 ) ) ) |
103 |
67 93 102
|
mpbir2and |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 ) |
104 |
103 44
|
sylibr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤 ∈ 𝑌 ) → 𝑤 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) |
105 |
104
|
ex |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑤 ∈ 𝑌 → 𝑤 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ) |
106 |
105
|
ssrdv |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑌 ⊆ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) |
107 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) |
108 |
106 107
|
eqssd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑌 = ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) |
109 |
|
in32 |
⊢ ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ∩ ( 𝑌 × 𝑌 ) ) = ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ∩ ( 𝑋 × 𝑌 ) ) |
110 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) |
111 |
110
|
ineq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑅 ∩ ( 𝑌 × 𝑌 ) ) = ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ∩ ( 𝑌 × 𝑌 ) ) ) |
112 |
86
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑅 ⊆ ( 𝑌 × 𝑌 ) ) |
113 |
|
df-ss |
⊢ ( 𝑅 ⊆ ( 𝑌 × 𝑌 ) ↔ ( 𝑅 ∩ ( 𝑌 × 𝑌 ) ) = 𝑅 ) |
114 |
112 113
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑅 ∩ ( 𝑌 × 𝑌 ) ) = 𝑅 ) |
115 |
111 114
|
eqtr3d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ∩ ( 𝑌 × 𝑌 ) ) = 𝑅 ) |
116 |
|
inss2 |
⊢ ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ⊆ ( 𝑌 × 𝑌 ) |
117 |
|
xpss1 |
⊢ ( 𝑌 ⊆ 𝑋 → ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑌 ) ) |
118 |
97 117
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑌 ) ) |
119 |
116 118
|
sstrid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ⊆ ( 𝑋 × 𝑌 ) ) |
120 |
|
df-ss |
⊢ ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ⊆ ( 𝑋 × 𝑌 ) ↔ ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ∩ ( 𝑋 × 𝑌 ) ) = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ) |
121 |
119 120
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ∩ ( 𝑋 × 𝑌 ) ) = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ) |
122 |
109 115 121
|
3eqtr3a |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ) |
123 |
108
|
sqxpeqd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑌 × 𝑌 ) = ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ) |
124 |
123
|
ineq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) = ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ) ) |
125 |
122 124
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ) ) |
126 |
108 125
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑌 𝐹 𝑅 ) = ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ) ) ) |
127 |
18
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝐴 ∈ 𝑉 ) |
128 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) |
129 |
128
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) |
130 |
1 127 129
|
fpwwe2lem3 |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ) ) = 𝑧 ) |
131 |
73 130
|
mpdan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ) ) ) = 𝑧 ) |
132 |
126 131
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑌 𝐹 𝑅 ) = 𝑧 ) |
133 |
132 62
|
eqneltrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∧ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ¬ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) |
134 |
133
|
rexlimdvaa |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ∃ 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 → ¬ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) |
135 |
60 134
|
sylbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ∃ 𝑧 ∈ ( 𝑋 ∖ 𝑌 ) ∀ 𝑤 ∈ ( 𝑋 ∖ 𝑌 ) ¬ 𝑤 ( 𝑊 ‘ 𝑋 ) 𝑧 → ¬ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) |
136 |
37 135
|
syld |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑋 ∖ 𝑌 ) ≠ ∅ → ¬ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) |
137 |
136
|
necon4ad |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 → ( 𝑋 ∖ 𝑌 ) = ∅ ) ) |
138 |
16 137
|
mpd |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋 ∖ 𝑌 ) = ∅ ) |
139 |
|
ssdif0 |
⊢ ( 𝑋 ⊆ 𝑌 ↔ ( 𝑋 ∖ 𝑌 ) = ∅ ) |
140 |
138 139
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝑋 ⊆ 𝑌 ) |
141 |
140
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) → 𝑋 ⊆ 𝑌 ) ) |
142 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
143 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑌 𝑊 𝑅 ) |
144 |
1 17 142 128 143
|
fpwwe2lem9 |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( ( 𝑋 ⊆ 𝑌 ∧ ( 𝑊 ‘ 𝑋 ) = ( 𝑅 ∩ ( 𝑌 × 𝑋 ) ) ) ∨ ( 𝑌 ⊆ 𝑋 ∧ 𝑅 = ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ) |
145 |
15 141 144
|
mpjaod |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑋 ⊆ 𝑌 ) |
146 |
13 145
|
eqssd |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑌 = 𝑋 ) |
147 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → Fun 𝑊 ) |
148 |
146 143
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑋 𝑊 𝑅 ) |
149 |
|
funbrfv |
⊢ ( Fun 𝑊 → ( 𝑋 𝑊 𝑅 → ( 𝑊 ‘ 𝑋 ) = 𝑅 ) ) |
150 |
147 148 149
|
sylc |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( 𝑊 ‘ 𝑋 ) = 𝑅 ) |
151 |
150
|
eqcomd |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑅 = ( 𝑊 ‘ 𝑋 ) ) |
152 |
146 151
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) ) |
153 |
152
|
ex |
⊢ ( 𝜑 → ( ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) → ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) ) ) |
154 |
1 2 3 4
|
fpwwe2lem12 |
⊢ ( 𝜑 → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |
155 |
22 154
|
jca |
⊢ ( 𝜑 → ( 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ∧ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ) |
156 |
|
breq12 |
⊢ ( ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) → ( 𝑌 𝑊 𝑅 ↔ 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) ) |
157 |
|
oveq12 |
⊢ ( ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) → ( 𝑌 𝐹 𝑅 ) = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) |
158 |
|
simpl |
⊢ ( ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) → 𝑌 = 𝑋 ) |
159 |
157 158
|
eleq12d |
⊢ ( ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) → ( ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ↔ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ) |
160 |
156 159
|
anbi12d |
⊢ ( ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) → ( ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ↔ ( 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ∧ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ) ) |
161 |
155 160
|
syl5ibrcom |
⊢ ( 𝜑 → ( ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) → ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ) |
162 |
153 161
|
impbid |
⊢ ( 𝜑 → ( ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ↔ ( 𝑌 = 𝑋 ∧ 𝑅 = ( 𝑊 ‘ 𝑋 ) ) ) ) |