Metamath Proof Explorer


Theorem fpwwe2

Description: Given any function F from well-orderings of subsets of A to A , there is a unique well-ordered subset <. X , ( WX ) >. which "agrees" with F in the sense that each initial segment maps to its upper bound, and such that the entire set maps to an element of the set (so that it cannot be extended without losing the well-ordering). This theorem can be used to prove dfac8a . Theorem 1.1 of KanamoriPincus p. 415. (Contributed by Mario Carneiro, 18-May-2015) (Revised by AV, 20-Jul-2024)

Ref Expression
Hypotheses fpwwe2.1 𝑊 = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 [ ( 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) }
fpwwe2.2 ( 𝜑𝐴𝑉 )
fpwwe2.3 ( ( 𝜑 ∧ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 )
fpwwe2.4 𝑋 = dom 𝑊
Assertion fpwwe2 ( 𝜑 → ( ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ↔ ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 fpwwe2.1 𝑊 = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 [ ( 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) }
2 fpwwe2.2 ( 𝜑𝐴𝑉 )
3 fpwwe2.3 ( ( 𝜑 ∧ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 )
4 fpwwe2.4 𝑋 = dom 𝑊
5 1 2 3 4 fpwwe2lem10 ( 𝜑𝑊 : dom 𝑊 ⟶ 𝒫 ( 𝑋 × 𝑋 ) )
6 5 ffund ( 𝜑 → Fun 𝑊 )
7 funbrfv2b ( Fun 𝑊 → ( 𝑌 𝑊 𝑅 ↔ ( 𝑌 ∈ dom 𝑊 ∧ ( 𝑊𝑌 ) = 𝑅 ) ) )
8 6 7 syl ( 𝜑 → ( 𝑌 𝑊 𝑅 ↔ ( 𝑌 ∈ dom 𝑊 ∧ ( 𝑊𝑌 ) = 𝑅 ) ) )
9 8 simprbda ( ( 𝜑𝑌 𝑊 𝑅 ) → 𝑌 ∈ dom 𝑊 )
10 9 adantrr ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑌 ∈ dom 𝑊 )
11 elssuni ( 𝑌 ∈ dom 𝑊𝑌 dom 𝑊 )
12 11 4 sseqtrrdi ( 𝑌 ∈ dom 𝑊𝑌𝑋 )
13 10 12 syl ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑌𝑋 )
14 simpl ( ( 𝑋𝑌 ∧ ( 𝑊𝑋 ) = ( 𝑅 ∩ ( 𝑌 × 𝑋 ) ) ) → 𝑋𝑌 )
15 14 a1i ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( ( 𝑋𝑌 ∧ ( 𝑊𝑋 ) = ( 𝑅 ∩ ( 𝑌 × 𝑋 ) ) ) → 𝑋𝑌 ) )
16 simplrr ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 )
17 2 adantr ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝐴𝑉 )
18 17 adantr ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝐴𝑉 )
19 1 2 3 4 fpwwe2lem11 ( 𝜑𝑋 ∈ dom 𝑊 )
20 funfvbrb ( Fun 𝑊 → ( 𝑋 ∈ dom 𝑊𝑋 𝑊 ( 𝑊𝑋 ) ) )
21 6 20 syl ( 𝜑 → ( 𝑋 ∈ dom 𝑊𝑋 𝑊 ( 𝑊𝑋 ) ) )
22 19 21 mpbid ( 𝜑𝑋 𝑊 ( 𝑊𝑋 ) )
23 1 2 fpwwe2lem2 ( 𝜑 → ( 𝑋 𝑊 ( 𝑊𝑋 ) ↔ ( ( 𝑋𝐴 ∧ ( 𝑊𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( ( 𝑊𝑋 ) We 𝑋 ∧ ∀ 𝑦𝑋 [ ( ( 𝑊𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) )
24 22 23 mpbid ( 𝜑 → ( ( 𝑋𝐴 ∧ ( 𝑊𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( ( 𝑊𝑋 ) We 𝑋 ∧ ∀ 𝑦𝑋 [ ( ( 𝑊𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) )
25 24 ad2antrr ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑋𝐴 ∧ ( 𝑊𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( ( 𝑊𝑋 ) We 𝑋 ∧ ∀ 𝑦𝑋 [ ( ( 𝑊𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) )
26 25 simpld ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋𝐴 ∧ ( 𝑊𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) )
27 26 simpld ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝑋𝐴 )
28 18 27 ssexd ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝑋 ∈ V )
29 28 difexd ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋𝑌 ) ∈ V )
30 25 simprd ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑊𝑋 ) We 𝑋 ∧ ∀ 𝑦𝑋 [ ( ( 𝑊𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) )
31 30 simpld ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑊𝑋 ) We 𝑋 )
32 wefr ( ( 𝑊𝑋 ) We 𝑋 → ( 𝑊𝑋 ) Fr 𝑋 )
33 31 32 syl ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑊𝑋 ) Fr 𝑋 )
34 difssd ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋𝑌 ) ⊆ 𝑋 )
35 fri ( ( ( ( 𝑋𝑌 ) ∈ V ∧ ( 𝑊𝑋 ) Fr 𝑋 ) ∧ ( ( 𝑋𝑌 ) ⊆ 𝑋 ∧ ( 𝑋𝑌 ) ≠ ∅ ) ) → ∃ 𝑧 ∈ ( 𝑋𝑌 ) ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 )
36 35 expr ( ( ( ( 𝑋𝑌 ) ∈ V ∧ ( 𝑊𝑋 ) Fr 𝑋 ) ∧ ( 𝑋𝑌 ) ⊆ 𝑋 ) → ( ( 𝑋𝑌 ) ≠ ∅ → ∃ 𝑧 ∈ ( 𝑋𝑌 ) ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 ) )
37 29 33 34 36 syl21anc ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑋𝑌 ) ≠ ∅ → ∃ 𝑧 ∈ ( 𝑋𝑌 ) ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 ) )
38 ssdif0 ( ( 𝑋 ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ⊆ 𝑌 ↔ ( ( 𝑋 ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ∖ 𝑌 ) = ∅ )
39 indif1 ( ( 𝑋𝑌 ) ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) = ( ( 𝑋 ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ∖ 𝑌 )
40 39 eqeq1i ( ( ( 𝑋𝑌 ) ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) = ∅ ↔ ( ( 𝑋 ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ∖ 𝑌 ) = ∅ )
41 disj ( ( ( 𝑋𝑌 ) ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) = ∅ ↔ ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ∈ ( ( 𝑊𝑋 ) “ { 𝑧 } ) )
42 vex 𝑤 ∈ V
43 42 eliniseg ( 𝑧 ∈ V → ( 𝑤 ∈ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ↔ 𝑤 ( 𝑊𝑋 ) 𝑧 ) )
44 43 elv ( 𝑤 ∈ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ↔ 𝑤 ( 𝑊𝑋 ) 𝑧 )
45 44 notbii ( ¬ 𝑤 ∈ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ↔ ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 )
46 45 ralbii ( ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ∈ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ↔ ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 )
47 41 46 bitri ( ( ( 𝑋𝑌 ) ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) = ∅ ↔ ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 )
48 38 40 47 3bitr2i ( ( 𝑋 ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ⊆ 𝑌 ↔ ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 )
49 cnvimass ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ dom ( 𝑊𝑋 )
50 26 simprd ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑊𝑋 ) ⊆ ( 𝑋 × 𝑋 ) )
51 dmss ( ( 𝑊𝑋 ) ⊆ ( 𝑋 × 𝑋 ) → dom ( 𝑊𝑋 ) ⊆ dom ( 𝑋 × 𝑋 ) )
52 50 51 syl ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → dom ( 𝑊𝑋 ) ⊆ dom ( 𝑋 × 𝑋 ) )
53 dmxpid dom ( 𝑋 × 𝑋 ) = 𝑋
54 52 53 sseqtrdi ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → dom ( 𝑊𝑋 ) ⊆ 𝑋 )
55 49 54 sstrid ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑋 )
56 sseqin2 ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑋 ↔ ( 𝑋 ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) = ( ( 𝑊𝑋 ) “ { 𝑧 } ) )
57 55 56 sylib ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋 ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) = ( ( 𝑊𝑋 ) “ { 𝑧 } ) )
58 57 sseq1d ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑋 ∩ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ⊆ 𝑌 ↔ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) )
59 48 58 bitr3id ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 ↔ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) )
60 59 rexbidv ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ∃ 𝑧 ∈ ( 𝑋𝑌 ) ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 ↔ ∃ 𝑧 ∈ ( 𝑋𝑌 ) ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) )
61 eldifn ( 𝑧 ∈ ( 𝑋𝑌 ) → ¬ 𝑧𝑌 )
62 61 ad2antrl ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ¬ 𝑧𝑌 )
63 eleq1w ( 𝑤 = 𝑧 → ( 𝑤𝑌𝑧𝑌 ) )
64 63 notbid ( 𝑤 = 𝑧 → ( ¬ 𝑤𝑌 ↔ ¬ 𝑧𝑌 ) )
65 62 64 syl5ibrcom ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑤 = 𝑧 → ¬ 𝑤𝑌 ) )
66 65 con2d ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑤𝑌 → ¬ 𝑤 = 𝑧 ) )
67 66 imp ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ¬ 𝑤 = 𝑧 )
68 62 adantr ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ¬ 𝑧𝑌 )
69 simprr ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) )
70 69 ad2antrr ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → 𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) )
71 70 breqd ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ( 𝑧 𝑅 𝑤𝑧 ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) 𝑤 ) )
72 eldifi ( 𝑧 ∈ ( 𝑋𝑌 ) → 𝑧𝑋 )
73 72 ad2antrl ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑧𝑋 )
74 73 adantr ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → 𝑧𝑋 )
75 simpr ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → 𝑤𝑌 )
76 brxp ( 𝑧 ( 𝑋 × 𝑌 ) 𝑤 ↔ ( 𝑧𝑋𝑤𝑌 ) )
77 74 75 76 sylanbrc ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → 𝑧 ( 𝑋 × 𝑌 ) 𝑤 )
78 brin ( 𝑧 ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) 𝑤 ↔ ( 𝑧 ( 𝑊𝑋 ) 𝑤𝑧 ( 𝑋 × 𝑌 ) 𝑤 ) )
79 78 rbaib ( 𝑧 ( 𝑋 × 𝑌 ) 𝑤 → ( 𝑧 ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) 𝑤𝑧 ( 𝑊𝑋 ) 𝑤 ) )
80 77 79 syl ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ( 𝑧 ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) 𝑤𝑧 ( 𝑊𝑋 ) 𝑤 ) )
81 71 80 bitrd ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ( 𝑧 𝑅 𝑤𝑧 ( 𝑊𝑋 ) 𝑤 ) )
82 1 2 fpwwe2lem2 ( 𝜑 → ( 𝑌 𝑊 𝑅 ↔ ( ( 𝑌𝐴𝑅 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑅 We 𝑌 ∧ ∀ 𝑦𝑌 [ ( 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) )
83 82 biimpa ( ( 𝜑𝑌 𝑊 𝑅 ) → ( ( 𝑌𝐴𝑅 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑅 We 𝑌 ∧ ∀ 𝑦𝑌 [ ( 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) )
84 83 adantrr ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( ( 𝑌𝐴𝑅 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑅 We 𝑌 ∧ ∀ 𝑦𝑌 [ ( 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) )
85 84 simpld ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( 𝑌𝐴𝑅 ⊆ ( 𝑌 × 𝑌 ) ) )
86 85 simprd ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑅 ⊆ ( 𝑌 × 𝑌 ) )
87 86 ad5ant12 ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → 𝑅 ⊆ ( 𝑌 × 𝑌 ) )
88 87 ssbrd ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ( 𝑧 𝑅 𝑤𝑧 ( 𝑌 × 𝑌 ) 𝑤 ) )
89 brxp ( 𝑧 ( 𝑌 × 𝑌 ) 𝑤 ↔ ( 𝑧𝑌𝑤𝑌 ) )
90 89 simplbi ( 𝑧 ( 𝑌 × 𝑌 ) 𝑤𝑧𝑌 )
91 88 90 syl6 ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ( 𝑧 𝑅 𝑤𝑧𝑌 ) )
92 81 91 sylbird ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ( 𝑧 ( 𝑊𝑋 ) 𝑤𝑧𝑌 ) )
93 68 92 mtod ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ¬ 𝑧 ( 𝑊𝑋 ) 𝑤 )
94 31 ad2antrr ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ( 𝑊𝑋 ) We 𝑋 )
95 weso ( ( 𝑊𝑋 ) We 𝑋 → ( 𝑊𝑋 ) Or 𝑋 )
96 94 95 syl ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ( 𝑊𝑋 ) Or 𝑋 )
97 13 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑌𝑋 )
98 97 sselda ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → 𝑤𝑋 )
99 sotric ( ( ( 𝑊𝑋 ) Or 𝑋 ∧ ( 𝑤𝑋𝑧𝑋 ) ) → ( 𝑤 ( 𝑊𝑋 ) 𝑧 ↔ ¬ ( 𝑤 = 𝑧𝑧 ( 𝑊𝑋 ) 𝑤 ) ) )
100 ioran ( ¬ ( 𝑤 = 𝑧𝑧 ( 𝑊𝑋 ) 𝑤 ) ↔ ( ¬ 𝑤 = 𝑧 ∧ ¬ 𝑧 ( 𝑊𝑋 ) 𝑤 ) )
101 99 100 bitrdi ( ( ( 𝑊𝑋 ) Or 𝑋 ∧ ( 𝑤𝑋𝑧𝑋 ) ) → ( 𝑤 ( 𝑊𝑋 ) 𝑧 ↔ ( ¬ 𝑤 = 𝑧 ∧ ¬ 𝑧 ( 𝑊𝑋 ) 𝑤 ) ) )
102 96 98 74 101 syl12anc ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → ( 𝑤 ( 𝑊𝑋 ) 𝑧 ↔ ( ¬ 𝑤 = 𝑧 ∧ ¬ 𝑧 ( 𝑊𝑋 ) 𝑤 ) ) )
103 67 93 102 mpbir2and ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → 𝑤 ( 𝑊𝑋 ) 𝑧 )
104 103 44 sylibr ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑤𝑌 ) → 𝑤 ∈ ( ( 𝑊𝑋 ) “ { 𝑧 } ) )
105 104 ex ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑤𝑌𝑤 ∈ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) )
106 105 ssrdv ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑌 ⊆ ( ( 𝑊𝑋 ) “ { 𝑧 } ) )
107 simprr ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 )
108 106 107 eqssd ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑌 = ( ( 𝑊𝑋 ) “ { 𝑧 } ) )
109 in32 ( ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ∩ ( 𝑌 × 𝑌 ) ) = ( ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ∩ ( 𝑋 × 𝑌 ) )
110 simplrr ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) )
111 110 ineq1d ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑅 ∩ ( 𝑌 × 𝑌 ) ) = ( ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ∩ ( 𝑌 × 𝑌 ) ) )
112 86 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑅 ⊆ ( 𝑌 × 𝑌 ) )
113 df-ss ( 𝑅 ⊆ ( 𝑌 × 𝑌 ) ↔ ( 𝑅 ∩ ( 𝑌 × 𝑌 ) ) = 𝑅 )
114 112 113 sylib ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑅 ∩ ( 𝑌 × 𝑌 ) ) = 𝑅 )
115 111 114 eqtr3d ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ∩ ( 𝑌 × 𝑌 ) ) = 𝑅 )
116 inss2 ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ⊆ ( 𝑌 × 𝑌 )
117 xpss1 ( 𝑌𝑋 → ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑌 ) )
118 97 117 syl ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑌 × 𝑌 ) ⊆ ( 𝑋 × 𝑌 ) )
119 116 118 sstrid ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ⊆ ( 𝑋 × 𝑌 ) )
120 df-ss ( ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ⊆ ( 𝑋 × 𝑌 ) ↔ ( ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ∩ ( 𝑋 × 𝑌 ) ) = ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) )
121 119 120 sylib ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) ∩ ( 𝑋 × 𝑌 ) ) = ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) )
122 109 115 121 3eqtr3a ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) )
123 108 sqxpeqd ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑌 × 𝑌 ) = ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) × ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) )
124 123 ineq2d ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( 𝑊𝑋 ) ∩ ( 𝑌 × 𝑌 ) ) = ( ( 𝑊𝑋 ) ∩ ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) × ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ) )
125 122 124 eqtrd ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑅 = ( ( 𝑊𝑋 ) ∩ ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) × ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ) )
126 108 125 oveq12d ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑌 𝐹 𝑅 ) = ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) 𝐹 ( ( 𝑊𝑋 ) ∩ ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) × ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ) ) )
127 18 adantr ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝐴𝑉 )
128 22 adantr ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑋 𝑊 ( 𝑊𝑋 ) )
129 128 ad2antrr ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → 𝑋 𝑊 ( 𝑊𝑋 ) )
130 1 127 129 fpwwe2lem3 ( ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) ∧ 𝑧𝑋 ) → ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) 𝐹 ( ( 𝑊𝑋 ) ∩ ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) × ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ) ) = 𝑧 )
131 73 130 mpdan ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) 𝐹 ( ( 𝑊𝑋 ) ∩ ( ( ( 𝑊𝑋 ) “ { 𝑧 } ) × ( ( 𝑊𝑋 ) “ { 𝑧 } ) ) ) ) = 𝑧 )
132 126 131 eqtrd ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ( 𝑌 𝐹 𝑅 ) = 𝑧 )
133 132 62 eqneltrd ( ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) ∧ ( 𝑧 ∈ ( 𝑋𝑌 ) ∧ ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 ) ) → ¬ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 )
134 133 rexlimdvaa ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ∃ 𝑧 ∈ ( 𝑋𝑌 ) ( ( 𝑊𝑋 ) “ { 𝑧 } ) ⊆ 𝑌 → ¬ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) )
135 60 134 sylbid ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ∃ 𝑧 ∈ ( 𝑋𝑌 ) ∀ 𝑤 ∈ ( 𝑋𝑌 ) ¬ 𝑤 ( 𝑊𝑋 ) 𝑧 → ¬ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) )
136 37 135 syld ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑋𝑌 ) ≠ ∅ → ¬ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) )
137 136 necon4ad ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 → ( 𝑋𝑌 ) = ∅ ) )
138 16 137 mpd ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → ( 𝑋𝑌 ) = ∅ )
139 ssdif0 ( 𝑋𝑌 ↔ ( 𝑋𝑌 ) = ∅ )
140 138 139 sylibr ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) → 𝑋𝑌 )
141 140 ex ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) → 𝑋𝑌 ) )
142 3 adantlr ( ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) ∧ ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 )
143 simprl ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑌 𝑊 𝑅 )
144 1 17 142 128 143 fpwwe2lem9 ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( ( 𝑋𝑌 ∧ ( 𝑊𝑋 ) = ( 𝑅 ∩ ( 𝑌 × 𝑋 ) ) ) ∨ ( 𝑌𝑋𝑅 = ( ( 𝑊𝑋 ) ∩ ( 𝑋 × 𝑌 ) ) ) ) )
145 15 141 144 mpjaod ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑋𝑌 )
146 13 145 eqssd ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑌 = 𝑋 )
147 6 adantr ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → Fun 𝑊 )
148 146 143 eqbrtrrd ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑋 𝑊 𝑅 )
149 funbrfv ( Fun 𝑊 → ( 𝑋 𝑊 𝑅 → ( 𝑊𝑋 ) = 𝑅 ) )
150 147 148 149 sylc ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( 𝑊𝑋 ) = 𝑅 )
151 150 eqcomd ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → 𝑅 = ( 𝑊𝑋 ) )
152 146 151 jca ( ( 𝜑 ∧ ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) → ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) )
153 152 ex ( 𝜑 → ( ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) → ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) ) )
154 1 2 3 4 fpwwe2lem12 ( 𝜑 → ( 𝑋 𝐹 ( 𝑊𝑋 ) ) ∈ 𝑋 )
155 22 154 jca ( 𝜑 → ( 𝑋 𝑊 ( 𝑊𝑋 ) ∧ ( 𝑋 𝐹 ( 𝑊𝑋 ) ) ∈ 𝑋 ) )
156 breq12 ( ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) → ( 𝑌 𝑊 𝑅𝑋 𝑊 ( 𝑊𝑋 ) ) )
157 oveq12 ( ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) → ( 𝑌 𝐹 𝑅 ) = ( 𝑋 𝐹 ( 𝑊𝑋 ) ) )
158 simpl ( ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) → 𝑌 = 𝑋 )
159 157 158 eleq12d ( ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) → ( ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ↔ ( 𝑋 𝐹 ( 𝑊𝑋 ) ) ∈ 𝑋 ) )
160 156 159 anbi12d ( ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) → ( ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ↔ ( 𝑋 𝑊 ( 𝑊𝑋 ) ∧ ( 𝑋 𝐹 ( 𝑊𝑋 ) ) ∈ 𝑋 ) ) )
161 155 160 syl5ibrcom ( 𝜑 → ( ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) → ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ) )
162 153 161 impbid ( 𝜑 → ( ( 𝑌 𝑊 𝑅 ∧ ( 𝑌 𝐹 𝑅 ) ∈ 𝑌 ) ↔ ( 𝑌 = 𝑋𝑅 = ( 𝑊𝑋 ) ) ) )