Step |
Hyp |
Ref |
Expression |
1 |
|
fpwwe2.1 |
⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } |
2 |
|
simpl |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → 𝑥 = 𝑎 ) |
3 |
2
|
sseq1d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑎 ⊆ 𝐴 ) ) |
4 |
|
simpr |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → 𝑟 = 𝑠 ) |
5 |
2
|
sqxpeqd |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( 𝑥 × 𝑥 ) = ( 𝑎 × 𝑎 ) ) |
6 |
4 5
|
sseq12d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ) |
7 |
3 6
|
anbi12d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ↔ ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ) ) |
8 |
|
weeq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝑟 We 𝑥 ↔ 𝑟 We 𝑎 ) ) |
9 |
|
weeq1 |
⊢ ( 𝑟 = 𝑠 → ( 𝑟 We 𝑎 ↔ 𝑠 We 𝑎 ) ) |
10 |
8 9
|
sylan9bb |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( 𝑟 We 𝑥 ↔ 𝑠 We 𝑎 ) ) |
11 |
|
id |
⊢ ( 𝑢 = 𝑣 → 𝑢 = 𝑣 ) |
12 |
11
|
sqxpeqd |
⊢ ( 𝑢 = 𝑣 → ( 𝑢 × 𝑢 ) = ( 𝑣 × 𝑣 ) ) |
13 |
12
|
ineq2d |
⊢ ( 𝑢 = 𝑣 → ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) = ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) |
14 |
11 13
|
oveq12d |
⊢ ( 𝑢 = 𝑣 → ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) ) |
15 |
14
|
eqeq1d |
⊢ ( 𝑢 = 𝑣 → ( ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑦 ) ) |
16 |
15
|
cbvsbcvw |
⊢ ( [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑦 ) |
17 |
|
sneq |
⊢ ( 𝑦 = 𝑧 → { 𝑦 } = { 𝑧 } ) |
18 |
17
|
imaeq2d |
⊢ ( 𝑦 = 𝑧 → ( ◡ 𝑟 “ { 𝑦 } ) = ( ◡ 𝑟 “ { 𝑧 } ) ) |
19 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑦 ↔ ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) |
20 |
18 19
|
sbceqbid |
⊢ ( 𝑦 = 𝑧 → ( [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑦 ↔ [ ( ◡ 𝑟 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) |
21 |
16 20
|
syl5bb |
⊢ ( 𝑦 = 𝑧 → ( [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ [ ( ◡ 𝑟 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) |
22 |
21
|
cbvralvw |
⊢ ( ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ∀ 𝑧 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) |
23 |
4
|
cnveqd |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ◡ 𝑟 = ◡ 𝑠 ) |
24 |
23
|
imaeq1d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( ◡ 𝑟 “ { 𝑧 } ) = ( ◡ 𝑠 “ { 𝑧 } ) ) |
25 |
4
|
ineq1d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) = ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) |
26 |
25
|
oveq2d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) ) |
27 |
26
|
eqeq1d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ↔ ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) |
28 |
24 27
|
sbceqbid |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( [ ( ◡ 𝑟 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ↔ [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) |
29 |
2 28
|
raleqbidv |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( ∀ 𝑧 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ↔ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) |
30 |
22 29
|
syl5bb |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) |
31 |
10 30
|
anbi12d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ↔ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) ) |
32 |
7 31
|
anbi12d |
⊢ ( ( 𝑥 = 𝑎 ∧ 𝑟 = 𝑠 ) → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ↔ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) ) ) |
33 |
32
|
cbvopabv |
⊢ { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } = { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } |
34 |
1 33
|
eqtri |
⊢ 𝑊 = { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) } |