Metamath Proof Explorer


Theorem fpwwe2cbv

Description: Lemma for fpwwe2 . (Contributed by Mario Carneiro, 3-Jun-2015)

Ref Expression
Hypothesis fpwwe2.1 𝑊 = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 [ ( 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) }
Assertion fpwwe2cbv 𝑊 = { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) }

Proof

Step Hyp Ref Expression
1 fpwwe2.1 𝑊 = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 [ ( 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) }
2 simpl ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → 𝑥 = 𝑎 )
3 2 sseq1d ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( 𝑥𝐴𝑎𝐴 ) )
4 simpr ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → 𝑟 = 𝑠 )
5 2 sqxpeqd ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( 𝑥 × 𝑥 ) = ( 𝑎 × 𝑎 ) )
6 4 5 sseq12d ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) )
7 3 6 anbi12d ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ↔ ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ) )
8 weeq2 ( 𝑥 = 𝑎 → ( 𝑟 We 𝑥𝑟 We 𝑎 ) )
9 weeq1 ( 𝑟 = 𝑠 → ( 𝑟 We 𝑎𝑠 We 𝑎 ) )
10 8 9 sylan9bb ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( 𝑟 We 𝑥𝑠 We 𝑎 ) )
11 id ( 𝑢 = 𝑣𝑢 = 𝑣 )
12 11 sqxpeqd ( 𝑢 = 𝑣 → ( 𝑢 × 𝑢 ) = ( 𝑣 × 𝑣 ) )
13 12 ineq2d ( 𝑢 = 𝑣 → ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) = ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) )
14 11 13 oveq12d ( 𝑢 = 𝑣 → ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) )
15 14 eqeq1d ( 𝑢 = 𝑣 → ( ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑦 ) )
16 15 cbvsbcvw ( [ ( 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦[ ( 𝑟 “ { 𝑦 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑦 )
17 sneq ( 𝑦 = 𝑧 → { 𝑦 } = { 𝑧 } )
18 17 imaeq2d ( 𝑦 = 𝑧 → ( 𝑟 “ { 𝑦 } ) = ( 𝑟 “ { 𝑧 } ) )
19 eqeq2 ( 𝑦 = 𝑧 → ( ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑦 ↔ ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) )
20 18 19 sbceqbid ( 𝑦 = 𝑧 → ( [ ( 𝑟 “ { 𝑦 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑦[ ( 𝑟 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) )
21 16 20 syl5bb ( 𝑦 = 𝑧 → ( [ ( 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦[ ( 𝑟 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) )
22 21 cbvralvw ( ∀ 𝑦𝑥 [ ( 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ∀ 𝑧𝑥 [ ( 𝑟 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 )
23 4 cnveqd ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → 𝑟 = 𝑠 )
24 23 imaeq1d ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( 𝑟 “ { 𝑧 } ) = ( 𝑠 “ { 𝑧 } ) )
25 4 ineq1d ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) = ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) )
26 25 oveq2d ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) )
27 26 eqeq1d ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ↔ ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) )
28 24 27 sbceqbid ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( [ ( 𝑟 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧[ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) )
29 2 28 raleqbidv ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( ∀ 𝑧𝑥 [ ( 𝑟 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑟 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ↔ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) )
30 22 29 syl5bb ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( ∀ 𝑦𝑥 [ ( 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) )
31 10 30 anbi12d ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 [ ( 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ↔ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) )
32 7 31 anbi12d ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 [ ( 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ↔ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) ) )
33 32 cbvopabv { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 [ ( 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } = { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) }
34 1 33 eqtri 𝑊 = { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 [ ( 𝑠 “ { 𝑧 } ) / 𝑣 ] ( 𝑣 𝐹 ( 𝑠 ∩ ( 𝑣 × 𝑣 ) ) ) = 𝑧 ) ) }