Step |
Hyp |
Ref |
Expression |
1 |
|
fpwwe2.1 |
⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } |
2 |
|
fpwwe2.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
fpwwe2.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
4 |
|
fpwwe2.4 |
⊢ 𝑋 = ∪ dom 𝑊 |
5 |
1
|
relopabiv |
⊢ Rel 𝑊 |
6 |
5
|
a1i |
⊢ ( 𝜑 → Rel 𝑊 ) |
7 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) ∧ ( 𝑤 ⊆ 𝑤 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑤 × 𝑤 ) ) ) ) → 𝑠 = ( 𝑡 ∩ ( 𝑤 × 𝑤 ) ) ) |
8 |
1 2
|
fpwwe2lem2 |
⊢ ( 𝜑 → ( 𝑤 𝑊 𝑡 ↔ ( ( 𝑤 ⊆ 𝐴 ∧ 𝑡 ⊆ ( 𝑤 × 𝑤 ) ) ∧ ( 𝑡 We 𝑤 ∧ ∀ 𝑦 ∈ 𝑤 [ ( ◡ 𝑡 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑡 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
9 |
8
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝑤 𝑊 𝑡 ) → ( 𝑤 ⊆ 𝐴 ∧ 𝑡 ⊆ ( 𝑤 × 𝑤 ) ) ) |
10 |
9
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑤 𝑊 𝑡 ) → 𝑡 ⊆ ( 𝑤 × 𝑤 ) ) |
11 |
10
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) → 𝑡 ⊆ ( 𝑤 × 𝑤 ) ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) ∧ ( 𝑤 ⊆ 𝑤 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑤 × 𝑤 ) ) ) ) → 𝑡 ⊆ ( 𝑤 × 𝑤 ) ) |
13 |
|
df-ss |
⊢ ( 𝑡 ⊆ ( 𝑤 × 𝑤 ) ↔ ( 𝑡 ∩ ( 𝑤 × 𝑤 ) ) = 𝑡 ) |
14 |
12 13
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) ∧ ( 𝑤 ⊆ 𝑤 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑤 × 𝑤 ) ) ) ) → ( 𝑡 ∩ ( 𝑤 × 𝑤 ) ) = 𝑡 ) |
15 |
7 14
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) ∧ ( 𝑤 ⊆ 𝑤 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑤 × 𝑤 ) ) ) ) → 𝑠 = 𝑡 ) |
16 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) ∧ ( 𝑤 ⊆ 𝑤 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑤 × 𝑤 ) ) ) ) → 𝑡 = ( 𝑠 ∩ ( 𝑤 × 𝑤 ) ) ) |
17 |
1 2
|
fpwwe2lem2 |
⊢ ( 𝜑 → ( 𝑤 𝑊 𝑠 ↔ ( ( 𝑤 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑤 × 𝑤 ) ) ∧ ( 𝑠 We 𝑤 ∧ ∀ 𝑦 ∈ 𝑤 [ ( ◡ 𝑠 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑠 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
18 |
17
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝑤 𝑊 𝑠 ) → ( 𝑤 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑤 × 𝑤 ) ) ) |
19 |
18
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑤 𝑊 𝑠 ) → 𝑠 ⊆ ( 𝑤 × 𝑤 ) ) |
20 |
19
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) → 𝑠 ⊆ ( 𝑤 × 𝑤 ) ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) ∧ ( 𝑤 ⊆ 𝑤 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑤 × 𝑤 ) ) ) ) → 𝑠 ⊆ ( 𝑤 × 𝑤 ) ) |
22 |
|
df-ss |
⊢ ( 𝑠 ⊆ ( 𝑤 × 𝑤 ) ↔ ( 𝑠 ∩ ( 𝑤 × 𝑤 ) ) = 𝑠 ) |
23 |
21 22
|
sylib |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) ∧ ( 𝑤 ⊆ 𝑤 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑤 × 𝑤 ) ) ) ) → ( 𝑠 ∩ ( 𝑤 × 𝑤 ) ) = 𝑠 ) |
24 |
16 23
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) ∧ ( 𝑤 ⊆ 𝑤 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑤 × 𝑤 ) ) ) ) → 𝑠 = 𝑡 ) |
25 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) → 𝐴 ∈ 𝑉 ) |
26 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
27 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) → 𝑤 𝑊 𝑠 ) |
28 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) → 𝑤 𝑊 𝑡 ) |
29 |
1 25 26 27 28
|
fpwwe2lem9 |
⊢ ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) → ( ( 𝑤 ⊆ 𝑤 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑤 × 𝑤 ) ) ) ∨ ( 𝑤 ⊆ 𝑤 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑤 × 𝑤 ) ) ) ) ) |
30 |
15 24 29
|
mpjaodan |
⊢ ( ( 𝜑 ∧ ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) ) → 𝑠 = 𝑡 ) |
31 |
30
|
ex |
⊢ ( 𝜑 → ( ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) → 𝑠 = 𝑡 ) ) |
32 |
31
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑡 ( ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) → 𝑠 = 𝑡 ) ) |
33 |
32
|
alrimivv |
⊢ ( 𝜑 → ∀ 𝑤 ∀ 𝑠 ∀ 𝑡 ( ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) → 𝑠 = 𝑡 ) ) |
34 |
|
dffun2 |
⊢ ( Fun 𝑊 ↔ ( Rel 𝑊 ∧ ∀ 𝑤 ∀ 𝑠 ∀ 𝑡 ( ( 𝑤 𝑊 𝑠 ∧ 𝑤 𝑊 𝑡 ) → 𝑠 = 𝑡 ) ) ) |
35 |
6 33 34
|
sylanbrc |
⊢ ( 𝜑 → Fun 𝑊 ) |
36 |
35
|
funfnd |
⊢ ( 𝜑 → 𝑊 Fn dom 𝑊 ) |
37 |
|
vex |
⊢ 𝑠 ∈ V |
38 |
37
|
elrn |
⊢ ( 𝑠 ∈ ran 𝑊 ↔ ∃ 𝑤 𝑤 𝑊 𝑠 ) |
39 |
5
|
releldmi |
⊢ ( 𝑤 𝑊 𝑠 → 𝑤 ∈ dom 𝑊 ) |
40 |
39
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 𝑊 𝑠 ) → 𝑤 ∈ dom 𝑊 ) |
41 |
|
elssuni |
⊢ ( 𝑤 ∈ dom 𝑊 → 𝑤 ⊆ ∪ dom 𝑊 ) |
42 |
40 41
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 𝑊 𝑠 ) → 𝑤 ⊆ ∪ dom 𝑊 ) |
43 |
42 4
|
sseqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑤 𝑊 𝑠 ) → 𝑤 ⊆ 𝑋 ) |
44 |
|
xpss12 |
⊢ ( ( 𝑤 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑋 ) → ( 𝑤 × 𝑤 ) ⊆ ( 𝑋 × 𝑋 ) ) |
45 |
43 43 44
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 𝑊 𝑠 ) → ( 𝑤 × 𝑤 ) ⊆ ( 𝑋 × 𝑋 ) ) |
46 |
19 45
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑤 𝑊 𝑠 ) → 𝑠 ⊆ ( 𝑋 × 𝑋 ) ) |
47 |
46
|
ex |
⊢ ( 𝜑 → ( 𝑤 𝑊 𝑠 → 𝑠 ⊆ ( 𝑋 × 𝑋 ) ) ) |
48 |
|
velpw |
⊢ ( 𝑠 ∈ 𝒫 ( 𝑋 × 𝑋 ) ↔ 𝑠 ⊆ ( 𝑋 × 𝑋 ) ) |
49 |
47 48
|
syl6ibr |
⊢ ( 𝜑 → ( 𝑤 𝑊 𝑠 → 𝑠 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) ) |
50 |
49
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑤 𝑤 𝑊 𝑠 → 𝑠 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) ) |
51 |
38 50
|
syl5bi |
⊢ ( 𝜑 → ( 𝑠 ∈ ran 𝑊 → 𝑠 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) ) |
52 |
51
|
ssrdv |
⊢ ( 𝜑 → ran 𝑊 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) |
53 |
|
df-f |
⊢ ( 𝑊 : dom 𝑊 ⟶ 𝒫 ( 𝑋 × 𝑋 ) ↔ ( 𝑊 Fn dom 𝑊 ∧ ran 𝑊 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) ) |
54 |
36 52 53
|
sylanbrc |
⊢ ( 𝜑 → 𝑊 : dom 𝑊 ⟶ 𝒫 ( 𝑋 × 𝑋 ) ) |