| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fpwwe2.1 | 
							⊢ 𝑊  =  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 ) )  ∧  ( 𝑟  We  𝑥  ∧  ∀ 𝑦  ∈  𝑥 [ ( ◡ 𝑟  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( 𝑟  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) }  | 
						
						
							| 2 | 
							
								
							 | 
							fpwwe2.2 | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑉 )  | 
						
						
							| 3 | 
							
								
							 | 
							fpwwe2.3 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  →  ( 𝑥 𝐹 𝑟 )  ∈  𝐴 )  | 
						
						
							| 4 | 
							
								
							 | 
							fpwwe2.4 | 
							⊢ 𝑋  =  ∪  dom  𝑊  | 
						
						
							| 5 | 
							
								1
							 | 
							relopabiv | 
							⊢ Rel  𝑊  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							⊢ ( 𝜑  →  Rel  𝑊 )  | 
						
						
							| 7 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 ) )  ∧  ( 𝑤  ⊆  𝑤  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑤  ×  𝑤 ) ) ) )  →  𝑠  =  ( 𝑡  ∩  ( 𝑤  ×  𝑤 ) ) )  | 
						
						
							| 8 | 
							
								1 2
							 | 
							fpwwe2lem2 | 
							⊢ ( 𝜑  →  ( 𝑤 𝑊 𝑡  ↔  ( ( 𝑤  ⊆  𝐴  ∧  𝑡  ⊆  ( 𝑤  ×  𝑤 ) )  ∧  ( 𝑡  We  𝑤  ∧  ∀ 𝑦  ∈  𝑤 [ ( ◡ 𝑡  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( 𝑡  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							simprbda | 
							⊢ ( ( 𝜑  ∧  𝑤 𝑊 𝑡 )  →  ( 𝑤  ⊆  𝐴  ∧  𝑡  ⊆  ( 𝑤  ×  𝑤 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							simprd | 
							⊢ ( ( 𝜑  ∧  𝑤 𝑊 𝑡 )  →  𝑡  ⊆  ( 𝑤  ×  𝑤 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantrl | 
							⊢ ( ( 𝜑  ∧  ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 ) )  →  𝑡  ⊆  ( 𝑤  ×  𝑤 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 ) )  ∧  ( 𝑤  ⊆  𝑤  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑤  ×  𝑤 ) ) ) )  →  𝑡  ⊆  ( 𝑤  ×  𝑤 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							dfss2 | 
							⊢ ( 𝑡  ⊆  ( 𝑤  ×  𝑤 )  ↔  ( 𝑡  ∩  ( 𝑤  ×  𝑤 ) )  =  𝑡 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							sylib | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 ) )  ∧  ( 𝑤  ⊆  𝑤  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑤  ×  𝑤 ) ) ) )  →  ( 𝑡  ∩  ( 𝑤  ×  𝑤 ) )  =  𝑡 )  | 
						
						
							| 15 | 
							
								7 14
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 ) )  ∧  ( 𝑤  ⊆  𝑤  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑤  ×  𝑤 ) ) ) )  →  𝑠  =  𝑡 )  | 
						
						
							| 16 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 ) )  ∧  ( 𝑤  ⊆  𝑤  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑤  ×  𝑤 ) ) ) )  →  𝑡  =  ( 𝑠  ∩  ( 𝑤  ×  𝑤 ) ) )  | 
						
						
							| 17 | 
							
								1 2
							 | 
							fpwwe2lem2 | 
							⊢ ( 𝜑  →  ( 𝑤 𝑊 𝑠  ↔  ( ( 𝑤  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑤  ×  𝑤 ) )  ∧  ( 𝑠  We  𝑤  ∧  ∀ 𝑦  ∈  𝑤 [ ( ◡ 𝑠  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( 𝑠  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							simprbda | 
							⊢ ( ( 𝜑  ∧  𝑤 𝑊 𝑠 )  →  ( 𝑤  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑤  ×  𝑤 ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							simprd | 
							⊢ ( ( 𝜑  ∧  𝑤 𝑊 𝑠 )  →  𝑠  ⊆  ( 𝑤  ×  𝑤 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantrr | 
							⊢ ( ( 𝜑  ∧  ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 ) )  →  𝑠  ⊆  ( 𝑤  ×  𝑤 ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 ) )  ∧  ( 𝑤  ⊆  𝑤  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑤  ×  𝑤 ) ) ) )  →  𝑠  ⊆  ( 𝑤  ×  𝑤 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							dfss2 | 
							⊢ ( 𝑠  ⊆  ( 𝑤  ×  𝑤 )  ↔  ( 𝑠  ∩  ( 𝑤  ×  𝑤 ) )  =  𝑠 )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							sylib | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 ) )  ∧  ( 𝑤  ⊆  𝑤  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑤  ×  𝑤 ) ) ) )  →  ( 𝑠  ∩  ( 𝑤  ×  𝑤 ) )  =  𝑠 )  | 
						
						
							| 24 | 
							
								16 23
							 | 
							eqtr2d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 ) )  ∧  ( 𝑤  ⊆  𝑤  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑤  ×  𝑤 ) ) ) )  →  𝑠  =  𝑡 )  | 
						
						
							| 25 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 ) )  →  𝐴  ∈  𝑉 )  | 
						
						
							| 26 | 
							
								3
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 ) )  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  →  ( 𝑥 𝐹 𝑟 )  ∈  𝐴 )  | 
						
						
							| 27 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 ) )  →  𝑤 𝑊 𝑠 )  | 
						
						
							| 28 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝜑  ∧  ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 ) )  →  𝑤 𝑊 𝑡 )  | 
						
						
							| 29 | 
							
								1 25 26 27 28
							 | 
							fpwwe2lem9 | 
							⊢ ( ( 𝜑  ∧  ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 ) )  →  ( ( 𝑤  ⊆  𝑤  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑤  ×  𝑤 ) ) )  ∨  ( 𝑤  ⊆  𝑤  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑤  ×  𝑤 ) ) ) ) )  | 
						
						
							| 30 | 
							
								15 24 29
							 | 
							mpjaodan | 
							⊢ ( ( 𝜑  ∧  ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 ) )  →  𝑠  =  𝑡 )  | 
						
						
							| 31 | 
							
								30
							 | 
							ex | 
							⊢ ( 𝜑  →  ( ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 )  →  𝑠  =  𝑡 ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							alrimiv | 
							⊢ ( 𝜑  →  ∀ 𝑡 ( ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 )  →  𝑠  =  𝑡 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							alrimivv | 
							⊢ ( 𝜑  →  ∀ 𝑤 ∀ 𝑠 ∀ 𝑡 ( ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 )  →  𝑠  =  𝑡 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							dffun2 | 
							⊢ ( Fun  𝑊  ↔  ( Rel  𝑊  ∧  ∀ 𝑤 ∀ 𝑠 ∀ 𝑡 ( ( 𝑤 𝑊 𝑠  ∧  𝑤 𝑊 𝑡 )  →  𝑠  =  𝑡 ) ) )  | 
						
						
							| 35 | 
							
								6 33 34
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  Fun  𝑊 )  | 
						
						
							| 36 | 
							
								35
							 | 
							funfnd | 
							⊢ ( 𝜑  →  𝑊  Fn  dom  𝑊 )  | 
						
						
							| 37 | 
							
								
							 | 
							vex | 
							⊢ 𝑠  ∈  V  | 
						
						
							| 38 | 
							
								37
							 | 
							elrn | 
							⊢ ( 𝑠  ∈  ran  𝑊  ↔  ∃ 𝑤 𝑤 𝑊 𝑠 )  | 
						
						
							| 39 | 
							
								5
							 | 
							releldmi | 
							⊢ ( 𝑤 𝑊 𝑠  →  𝑤  ∈  dom  𝑊 )  | 
						
						
							| 40 | 
							
								39
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑤 𝑊 𝑠 )  →  𝑤  ∈  dom  𝑊 )  | 
						
						
							| 41 | 
							
								
							 | 
							elssuni | 
							⊢ ( 𝑤  ∈  dom  𝑊  →  𝑤  ⊆  ∪  dom  𝑊 )  | 
						
						
							| 42 | 
							
								40 41
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑤 𝑊 𝑠 )  →  𝑤  ⊆  ∪  dom  𝑊 )  | 
						
						
							| 43 | 
							
								42 4
							 | 
							sseqtrrdi | 
							⊢ ( ( 𝜑  ∧  𝑤 𝑊 𝑠 )  →  𝑤  ⊆  𝑋 )  | 
						
						
							| 44 | 
							
								
							 | 
							xpss12 | 
							⊢ ( ( 𝑤  ⊆  𝑋  ∧  𝑤  ⊆  𝑋 )  →  ( 𝑤  ×  𝑤 )  ⊆  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 45 | 
							
								43 43 44
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑤 𝑊 𝑠 )  →  ( 𝑤  ×  𝑤 )  ⊆  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 46 | 
							
								19 45
							 | 
							sstrd | 
							⊢ ( ( 𝜑  ∧  𝑤 𝑊 𝑠 )  →  𝑠  ⊆  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝑤 𝑊 𝑠  →  𝑠  ⊆  ( 𝑋  ×  𝑋 ) ) )  | 
						
						
							| 48 | 
							
								
							 | 
							velpw | 
							⊢ ( 𝑠  ∈  𝒫  ( 𝑋  ×  𝑋 )  ↔  𝑠  ⊆  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 49 | 
							
								47 48
							 | 
							imbitrrdi | 
							⊢ ( 𝜑  →  ( 𝑤 𝑊 𝑠  →  𝑠  ∈  𝒫  ( 𝑋  ×  𝑋 ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							exlimdv | 
							⊢ ( 𝜑  →  ( ∃ 𝑤 𝑤 𝑊 𝑠  →  𝑠  ∈  𝒫  ( 𝑋  ×  𝑋 ) ) )  | 
						
						
							| 51 | 
							
								38 50
							 | 
							biimtrid | 
							⊢ ( 𝜑  →  ( 𝑠  ∈  ran  𝑊  →  𝑠  ∈  𝒫  ( 𝑋  ×  𝑋 ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							ssrdv | 
							⊢ ( 𝜑  →  ran  𝑊  ⊆  𝒫  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 53 | 
							
								
							 | 
							df-f | 
							⊢ ( 𝑊 : dom  𝑊 ⟶ 𝒫  ( 𝑋  ×  𝑋 )  ↔  ( 𝑊  Fn  dom  𝑊  ∧  ran  𝑊  ⊆  𝒫  ( 𝑋  ×  𝑋 ) ) )  | 
						
						
							| 54 | 
							
								36 52 53
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  𝑊 : dom  𝑊 ⟶ 𝒫  ( 𝑋  ×  𝑋 ) )  |