Step |
Hyp |
Ref |
Expression |
1 |
|
fpwwe2.1 |
⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } |
2 |
|
fpwwe2.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
fpwwe2.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
4 |
|
fpwwe2.4 |
⊢ 𝑋 = ∪ dom 𝑊 |
5 |
|
vex |
⊢ 𝑎 ∈ V |
6 |
5
|
eldm |
⊢ ( 𝑎 ∈ dom 𝑊 ↔ ∃ 𝑠 𝑎 𝑊 𝑠 ) |
7 |
1 2
|
fpwwe2lem2 |
⊢ ( 𝜑 → ( 𝑎 𝑊 𝑠 ↔ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑦 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑠 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
8 |
7
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ) |
9 |
8
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑎 ⊆ 𝐴 ) |
10 |
|
velpw |
⊢ ( 𝑎 ∈ 𝒫 𝐴 ↔ 𝑎 ⊆ 𝐴 ) |
11 |
9 10
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑎 ∈ 𝒫 𝐴 ) |
12 |
11
|
ex |
⊢ ( 𝜑 → ( 𝑎 𝑊 𝑠 → 𝑎 ∈ 𝒫 𝐴 ) ) |
13 |
12
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑠 𝑎 𝑊 𝑠 → 𝑎 ∈ 𝒫 𝐴 ) ) |
14 |
6 13
|
syl5bi |
⊢ ( 𝜑 → ( 𝑎 ∈ dom 𝑊 → 𝑎 ∈ 𝒫 𝐴 ) ) |
15 |
14
|
ssrdv |
⊢ ( 𝜑 → dom 𝑊 ⊆ 𝒫 𝐴 ) |
16 |
|
sspwuni |
⊢ ( dom 𝑊 ⊆ 𝒫 𝐴 ↔ ∪ dom 𝑊 ⊆ 𝐴 ) |
17 |
15 16
|
sylib |
⊢ ( 𝜑 → ∪ dom 𝑊 ⊆ 𝐴 ) |
18 |
4 17
|
eqsstrid |
⊢ ( 𝜑 → 𝑋 ⊆ 𝐴 ) |
19 |
|
vex |
⊢ 𝑠 ∈ V |
20 |
19
|
elrn |
⊢ ( 𝑠 ∈ ran 𝑊 ↔ ∃ 𝑎 𝑎 𝑊 𝑠 ) |
21 |
8
|
simprd |
⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) |
22 |
1
|
relopabiv |
⊢ Rel 𝑊 |
23 |
22
|
releldmi |
⊢ ( 𝑎 𝑊 𝑠 → 𝑎 ∈ dom 𝑊 ) |
24 |
23
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑎 ∈ dom 𝑊 ) |
25 |
|
elssuni |
⊢ ( 𝑎 ∈ dom 𝑊 → 𝑎 ⊆ ∪ dom 𝑊 ) |
26 |
24 25
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑎 ⊆ ∪ dom 𝑊 ) |
27 |
26 4
|
sseqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑎 ⊆ 𝑋 ) |
28 |
|
xpss12 |
⊢ ( ( 𝑎 ⊆ 𝑋 ∧ 𝑎 ⊆ 𝑋 ) → ( 𝑎 × 𝑎 ) ⊆ ( 𝑋 × 𝑋 ) ) |
29 |
27 27 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → ( 𝑎 × 𝑎 ) ⊆ ( 𝑋 × 𝑋 ) ) |
30 |
21 29
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑠 ⊆ ( 𝑋 × 𝑋 ) ) |
31 |
|
velpw |
⊢ ( 𝑠 ∈ 𝒫 ( 𝑋 × 𝑋 ) ↔ 𝑠 ⊆ ( 𝑋 × 𝑋 ) ) |
32 |
30 31
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑠 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) |
33 |
32
|
ex |
⊢ ( 𝜑 → ( 𝑎 𝑊 𝑠 → 𝑠 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) ) |
34 |
33
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑎 𝑎 𝑊 𝑠 → 𝑠 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) ) |
35 |
20 34
|
syl5bi |
⊢ ( 𝜑 → ( 𝑠 ∈ ran 𝑊 → 𝑠 ∈ 𝒫 ( 𝑋 × 𝑋 ) ) ) |
36 |
35
|
ssrdv |
⊢ ( 𝜑 → ran 𝑊 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ) |
37 |
|
sspwuni |
⊢ ( ran 𝑊 ⊆ 𝒫 ( 𝑋 × 𝑋 ) ↔ ∪ ran 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) |
38 |
36 37
|
sylib |
⊢ ( 𝜑 → ∪ ran 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) |
39 |
18 38
|
jca |
⊢ ( 𝜑 → ( 𝑋 ⊆ 𝐴 ∧ ∪ ran 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) ) |
40 |
|
n0 |
⊢ ( 𝑛 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑛 ) |
41 |
|
ssel2 |
⊢ ( ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) → 𝑦 ∈ 𝑋 ) |
42 |
41
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) → 𝑦 ∈ 𝑋 ) |
43 |
4
|
eleq2i |
⊢ ( 𝑦 ∈ 𝑋 ↔ 𝑦 ∈ ∪ dom 𝑊 ) |
44 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ dom 𝑊 ↔ ∃ 𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎 ) |
45 |
43 44
|
bitri |
⊢ ( 𝑦 ∈ 𝑋 ↔ ∃ 𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎 ) |
46 |
42 45
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) → ∃ 𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎 ) |
47 |
5
|
inex2 |
⊢ ( 𝑛 ∩ 𝑎 ) ∈ V |
48 |
47
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( 𝑛 ∩ 𝑎 ) ∈ V ) |
49 |
7
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → ( 𝑠 We 𝑎 ∧ ∀ 𝑦 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑠 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
50 |
49
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑠 We 𝑎 ) |
51 |
50
|
ad2ant2r |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → 𝑠 We 𝑎 ) |
52 |
|
wefr |
⊢ ( 𝑠 We 𝑎 → 𝑠 Fr 𝑎 ) |
53 |
51 52
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → 𝑠 Fr 𝑎 ) |
54 |
|
inss2 |
⊢ ( 𝑛 ∩ 𝑎 ) ⊆ 𝑎 |
55 |
54
|
a1i |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( 𝑛 ∩ 𝑎 ) ⊆ 𝑎 ) |
56 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → 𝑦 ∈ 𝑛 ) |
57 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → 𝑦 ∈ 𝑎 ) |
58 |
|
inelcm |
⊢ ( ( 𝑦 ∈ 𝑛 ∧ 𝑦 ∈ 𝑎 ) → ( 𝑛 ∩ 𝑎 ) ≠ ∅ ) |
59 |
56 57 58
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( 𝑛 ∩ 𝑎 ) ≠ ∅ ) |
60 |
|
fri |
⊢ ( ( ( ( 𝑛 ∩ 𝑎 ) ∈ V ∧ 𝑠 Fr 𝑎 ) ∧ ( ( 𝑛 ∩ 𝑎 ) ⊆ 𝑎 ∧ ( 𝑛 ∩ 𝑎 ) ≠ ∅ ) ) → ∃ 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) |
61 |
48 53 55 59 60
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ∃ 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) |
62 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) → 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ) |
63 |
62
|
elin1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) → 𝑣 ∈ 𝑛 ) |
64 |
|
simplrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ 𝑤 ∈ 𝑛 ) → ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) |
65 |
|
ralnex |
⊢ ( ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ↔ ¬ ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) |
66 |
64 65
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ 𝑤 ∈ 𝑛 ) → ¬ ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) |
67 |
|
df-br |
⊢ ( 𝑤 ∪ ran 𝑊 𝑣 ↔ 〈 𝑤 , 𝑣 〉 ∈ ∪ ran 𝑊 ) |
68 |
|
eluni2 |
⊢ ( 〈 𝑤 , 𝑣 〉 ∈ ∪ ran 𝑊 ↔ ∃ 𝑡 ∈ ran 𝑊 〈 𝑤 , 𝑣 〉 ∈ 𝑡 ) |
69 |
67 68
|
bitri |
⊢ ( 𝑤 ∪ ran 𝑊 𝑣 ↔ ∃ 𝑡 ∈ ran 𝑊 〈 𝑤 , 𝑣 〉 ∈ 𝑡 ) |
70 |
|
vex |
⊢ 𝑡 ∈ V |
71 |
70
|
elrn |
⊢ ( 𝑡 ∈ ran 𝑊 ↔ ∃ 𝑏 𝑏 𝑊 𝑡 ) |
72 |
|
df-br |
⊢ ( 𝑤 𝑡 𝑣 ↔ 〈 𝑤 , 𝑣 〉 ∈ 𝑡 ) |
73 |
|
simprll |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → 𝑤 ∈ 𝑛 ) |
74 |
73
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 ∈ 𝑛 ) |
75 |
|
simprr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → 𝑤 𝑡 𝑣 ) |
76 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → 𝜑 ) |
77 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → 𝑎 𝑊 𝑠 ) |
78 |
77
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → 𝑎 𝑊 𝑠 ) |
79 |
|
simprlr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → 𝑏 𝑊 𝑡 ) |
80 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → 𝑏 𝑊 𝑡 ) |
81 |
1 2
|
fpwwe2lem2 |
⊢ ( 𝜑 → ( 𝑏 𝑊 𝑡 ↔ ( ( 𝑏 ⊆ 𝐴 ∧ 𝑡 ⊆ ( 𝑏 × 𝑏 ) ) ∧ ( 𝑡 We 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 [ ( ◡ 𝑡 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑡 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
82 |
81
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → ( 𝑏 𝑊 𝑡 ↔ ( ( 𝑏 ⊆ 𝐴 ∧ 𝑡 ⊆ ( 𝑏 × 𝑏 ) ) ∧ ( 𝑡 We 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 [ ( ◡ 𝑡 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑡 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
83 |
80 82
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → ( ( 𝑏 ⊆ 𝐴 ∧ 𝑡 ⊆ ( 𝑏 × 𝑏 ) ) ∧ ( 𝑡 We 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 [ ( ◡ 𝑡 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑡 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
84 |
83
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → ( 𝑏 ⊆ 𝐴 ∧ 𝑡 ⊆ ( 𝑏 × 𝑏 ) ) ) |
85 |
84
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → 𝑡 ⊆ ( 𝑏 × 𝑏 ) ) |
86 |
76 78 79 85
|
syl12anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → 𝑡 ⊆ ( 𝑏 × 𝑏 ) ) |
87 |
86
|
ssbrd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → ( 𝑤 𝑡 𝑣 → 𝑤 ( 𝑏 × 𝑏 ) 𝑣 ) ) |
88 |
75 87
|
mpd |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → 𝑤 ( 𝑏 × 𝑏 ) 𝑣 ) |
89 |
|
brxp |
⊢ ( 𝑤 ( 𝑏 × 𝑏 ) 𝑣 ↔ ( 𝑤 ∈ 𝑏 ∧ 𝑣 ∈ 𝑏 ) ) |
90 |
89
|
simplbi |
⊢ ( 𝑤 ( 𝑏 × 𝑏 ) 𝑣 → 𝑤 ∈ 𝑏 ) |
91 |
88 90
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → 𝑤 ∈ 𝑏 ) |
92 |
91
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 ∈ 𝑏 ) |
93 |
62
|
elin2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) → 𝑣 ∈ 𝑎 ) |
94 |
93
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑣 ∈ 𝑎 ) |
95 |
|
simplrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 𝑡 𝑣 ) |
96 |
|
brinxp2 |
⊢ ( 𝑤 ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) 𝑣 ↔ ( ( 𝑤 ∈ 𝑏 ∧ 𝑣 ∈ 𝑎 ) ∧ 𝑤 𝑡 𝑣 ) ) |
97 |
92 94 95 96
|
syl21anbrc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) 𝑣 ) |
98 |
|
simprr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) |
99 |
98
|
breqd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑤 𝑠 𝑣 ↔ 𝑤 ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) 𝑣 ) ) |
100 |
97 99
|
mpbird |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 𝑠 𝑣 ) |
101 |
76 78 21
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) |
102 |
101
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) |
103 |
102
|
ssbrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑤 𝑠 𝑣 → 𝑤 ( 𝑎 × 𝑎 ) 𝑣 ) ) |
104 |
100 103
|
mpd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 ( 𝑎 × 𝑎 ) 𝑣 ) |
105 |
|
brxp |
⊢ ( 𝑤 ( 𝑎 × 𝑎 ) 𝑣 ↔ ( 𝑤 ∈ 𝑎 ∧ 𝑣 ∈ 𝑎 ) ) |
106 |
105
|
simplbi |
⊢ ( 𝑤 ( 𝑎 × 𝑎 ) 𝑣 → 𝑤 ∈ 𝑎 ) |
107 |
104 106
|
syl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 ∈ 𝑎 ) |
108 |
74 107
|
elind |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 ∈ ( 𝑛 ∩ 𝑎 ) ) |
109 |
|
breq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 𝑠 𝑣 ↔ 𝑤 𝑠 𝑣 ) ) |
110 |
109
|
rspcev |
⊢ ( ( 𝑤 ∈ ( 𝑛 ∩ 𝑎 ) ∧ 𝑤 𝑠 𝑣 ) → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) |
111 |
108 100 110
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) |
112 |
73
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑤 ∈ 𝑛 ) |
113 |
|
simprl |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑏 ⊆ 𝑎 ) |
114 |
91
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑤 ∈ 𝑏 ) |
115 |
113 114
|
sseldd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑤 ∈ 𝑎 ) |
116 |
112 115
|
elind |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑤 ∈ ( 𝑛 ∩ 𝑎 ) ) |
117 |
|
simplrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑤 𝑡 𝑣 ) |
118 |
|
simprr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) |
119 |
|
inss1 |
⊢ ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ⊆ 𝑠 |
120 |
118 119
|
eqsstrdi |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑡 ⊆ 𝑠 ) |
121 |
120
|
ssbrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → ( 𝑤 𝑡 𝑣 → 𝑤 𝑠 𝑣 ) ) |
122 |
117 121
|
mpd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑤 𝑠 𝑣 ) |
123 |
116 122 110
|
syl2anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) |
124 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → 𝐴 ∈ 𝑉 ) |
125 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
126 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → 𝑎 𝑊 𝑠 ) |
127 |
1 124 125 126 80
|
fpwwe2lem9 |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → ( ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ∨ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) ) |
128 |
76 78 79 127
|
syl12anc |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → ( ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ∨ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) ) |
129 |
111 123 128
|
mpjaodan |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ∧ 𝑤 𝑡 𝑣 ) ) → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) |
130 |
129
|
expr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ) → ( 𝑤 𝑡 𝑣 → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) ) |
131 |
72 130
|
syl5bir |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ ( 𝑤 ∈ 𝑛 ∧ 𝑏 𝑊 𝑡 ) ) → ( 〈 𝑤 , 𝑣 〉 ∈ 𝑡 → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) ) |
132 |
131
|
expr |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ 𝑤 ∈ 𝑛 ) → ( 𝑏 𝑊 𝑡 → ( 〈 𝑤 , 𝑣 〉 ∈ 𝑡 → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) ) ) |
133 |
132
|
exlimdv |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ 𝑤 ∈ 𝑛 ) → ( ∃ 𝑏 𝑏 𝑊 𝑡 → ( 〈 𝑤 , 𝑣 〉 ∈ 𝑡 → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) ) ) |
134 |
71 133
|
syl5bi |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ 𝑤 ∈ 𝑛 ) → ( 𝑡 ∈ ran 𝑊 → ( 〈 𝑤 , 𝑣 〉 ∈ 𝑡 → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) ) ) |
135 |
134
|
rexlimdv |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ 𝑤 ∈ 𝑛 ) → ( ∃ 𝑡 ∈ ran 𝑊 〈 𝑤 , 𝑣 〉 ∈ 𝑡 → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) ) |
136 |
69 135
|
syl5bi |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ 𝑤 ∈ 𝑛 ) → ( 𝑤 ∪ ran 𝑊 𝑣 → ∃ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) 𝑧 𝑠 𝑣 ) ) |
137 |
66 136
|
mtod |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) ∧ 𝑤 ∈ 𝑛 ) → ¬ 𝑤 ∪ ran 𝑊 𝑣 ) |
138 |
137
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑣 ∈ ( 𝑛 ∩ 𝑎 ) ∧ ∀ 𝑧 ∈ ( 𝑛 ∩ 𝑎 ) ¬ 𝑧 𝑠 𝑣 ) ) → ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) |
139 |
61 63 138
|
reximssdv |
⊢ ( ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) |
140 |
139
|
exp32 |
⊢ ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) → ( 𝑎 𝑊 𝑠 → ( 𝑦 ∈ 𝑎 → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) ) |
141 |
140
|
exlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) → ( ∃ 𝑠 𝑎 𝑊 𝑠 → ( 𝑦 ∈ 𝑎 → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) ) |
142 |
6 141
|
syl5bi |
⊢ ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) → ( 𝑎 ∈ dom 𝑊 → ( 𝑦 ∈ 𝑎 → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) ) |
143 |
142
|
rexlimdv |
⊢ ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) → ( ∃ 𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎 → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) |
144 |
46 143
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ⊆ 𝑋 ∧ 𝑦 ∈ 𝑛 ) ) → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) |
145 |
144
|
expr |
⊢ ( ( 𝜑 ∧ 𝑛 ⊆ 𝑋 ) → ( 𝑦 ∈ 𝑛 → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) |
146 |
145
|
exlimdv |
⊢ ( ( 𝜑 ∧ 𝑛 ⊆ 𝑋 ) → ( ∃ 𝑦 𝑦 ∈ 𝑛 → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) |
147 |
40 146
|
syl5bi |
⊢ ( ( 𝜑 ∧ 𝑛 ⊆ 𝑋 ) → ( 𝑛 ≠ ∅ → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) |
148 |
147
|
expimpd |
⊢ ( 𝜑 → ( ( 𝑛 ⊆ 𝑋 ∧ 𝑛 ≠ ∅ ) → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) |
149 |
148
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑛 ( ( 𝑛 ⊆ 𝑋 ∧ 𝑛 ≠ ∅ ) → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) |
150 |
|
df-fr |
⊢ ( ∪ ran 𝑊 Fr 𝑋 ↔ ∀ 𝑛 ( ( 𝑛 ⊆ 𝑋 ∧ 𝑛 ≠ ∅ ) → ∃ 𝑣 ∈ 𝑛 ∀ 𝑤 ∈ 𝑛 ¬ 𝑤 ∪ ran 𝑊 𝑣 ) ) |
151 |
149 150
|
sylibr |
⊢ ( 𝜑 → ∪ ran 𝑊 Fr 𝑋 ) |
152 |
4
|
eleq2i |
⊢ ( 𝑤 ∈ 𝑋 ↔ 𝑤 ∈ ∪ dom 𝑊 ) |
153 |
|
eluni2 |
⊢ ( 𝑤 ∈ ∪ dom 𝑊 ↔ ∃ 𝑏 ∈ dom 𝑊 𝑤 ∈ 𝑏 ) |
154 |
152 153
|
bitri |
⊢ ( 𝑤 ∈ 𝑋 ↔ ∃ 𝑏 ∈ dom 𝑊 𝑤 ∈ 𝑏 ) |
155 |
45 154
|
anbi12i |
⊢ ( ( 𝑦 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ↔ ( ∃ 𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎 ∧ ∃ 𝑏 ∈ dom 𝑊 𝑤 ∈ 𝑏 ) ) |
156 |
|
reeanv |
⊢ ( ∃ 𝑎 ∈ dom 𝑊 ∃ 𝑏 ∈ dom 𝑊 ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ↔ ( ∃ 𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎 ∧ ∃ 𝑏 ∈ dom 𝑊 𝑤 ∈ 𝑏 ) ) |
157 |
155 156
|
bitr4i |
⊢ ( ( 𝑦 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ↔ ∃ 𝑎 ∈ dom 𝑊 ∃ 𝑏 ∈ dom 𝑊 ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) |
158 |
|
vex |
⊢ 𝑏 ∈ V |
159 |
158
|
eldm |
⊢ ( 𝑏 ∈ dom 𝑊 ↔ ∃ 𝑡 𝑏 𝑊 𝑡 ) |
160 |
6 159
|
anbi12i |
⊢ ( ( 𝑎 ∈ dom 𝑊 ∧ 𝑏 ∈ dom 𝑊 ) ↔ ( ∃ 𝑠 𝑎 𝑊 𝑠 ∧ ∃ 𝑡 𝑏 𝑊 𝑡 ) ) |
161 |
|
exdistrv |
⊢ ( ∃ 𝑠 ∃ 𝑡 ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ↔ ( ∃ 𝑠 𝑎 𝑊 𝑠 ∧ ∃ 𝑡 𝑏 𝑊 𝑡 ) ) |
162 |
160 161
|
bitr4i |
⊢ ( ( 𝑎 ∈ dom 𝑊 ∧ 𝑏 ∈ dom 𝑊 ) ↔ ∃ 𝑠 ∃ 𝑡 ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) |
163 |
83
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → ( 𝑡 We 𝑏 ∧ ∀ 𝑦 ∈ 𝑏 [ ( ◡ 𝑡 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑡 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
164 |
163
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → 𝑡 We 𝑏 ) |
165 |
164
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑡 We 𝑏 ) |
166 |
|
weso |
⊢ ( 𝑡 We 𝑏 → 𝑡 Or 𝑏 ) |
167 |
165 166
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑡 Or 𝑏 ) |
168 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑎 ⊆ 𝑏 ) |
169 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑦 ∈ 𝑎 ) |
170 |
168 169
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑦 ∈ 𝑏 ) |
171 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 ∈ 𝑏 ) |
172 |
|
solin |
⊢ ( ( 𝑡 Or 𝑏 ∧ ( 𝑦 ∈ 𝑏 ∧ 𝑤 ∈ 𝑏 ) ) → ( 𝑦 𝑡 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 𝑡 𝑦 ) ) |
173 |
167 170 171 172
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑦 𝑡 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 𝑡 𝑦 ) ) |
174 |
22
|
relelrni |
⊢ ( 𝑏 𝑊 𝑡 → 𝑡 ∈ ran 𝑊 ) |
175 |
174
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → 𝑡 ∈ ran 𝑊 ) |
176 |
175
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑡 ∈ ran 𝑊 ) |
177 |
|
elssuni |
⊢ ( 𝑡 ∈ ran 𝑊 → 𝑡 ⊆ ∪ ran 𝑊 ) |
178 |
176 177
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑡 ⊆ ∪ ran 𝑊 ) |
179 |
178
|
ssbrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑦 𝑡 𝑤 → 𝑦 ∪ ran 𝑊 𝑤 ) ) |
180 |
|
idd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑦 = 𝑤 → 𝑦 = 𝑤 ) ) |
181 |
178
|
ssbrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑤 𝑡 𝑦 → 𝑤 ∪ ran 𝑊 𝑦 ) ) |
182 |
179 180 181
|
3orim123d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( ( 𝑦 𝑡 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 𝑡 𝑦 ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) ) |
183 |
173 182
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) |
184 |
50
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → 𝑠 We 𝑎 ) |
185 |
184
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑠 We 𝑎 ) |
186 |
|
weso |
⊢ ( 𝑠 We 𝑎 → 𝑠 Or 𝑎 ) |
187 |
185 186
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑠 Or 𝑎 ) |
188 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑦 ∈ 𝑎 ) |
189 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑏 ⊆ 𝑎 ) |
190 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑤 ∈ 𝑏 ) |
191 |
189 190
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑤 ∈ 𝑎 ) |
192 |
|
solin |
⊢ ( ( 𝑠 Or 𝑎 ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑎 ) ) → ( 𝑦 𝑠 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 𝑠 𝑦 ) ) |
193 |
187 188 191 192
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → ( 𝑦 𝑠 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 𝑠 𝑦 ) ) |
194 |
22
|
relelrni |
⊢ ( 𝑎 𝑊 𝑠 → 𝑠 ∈ ran 𝑊 ) |
195 |
194
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → 𝑠 ∈ ran 𝑊 ) |
196 |
195
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑠 ∈ ran 𝑊 ) |
197 |
|
elssuni |
⊢ ( 𝑠 ∈ ran 𝑊 → 𝑠 ⊆ ∪ ran 𝑊 ) |
198 |
196 197
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑠 ⊆ ∪ ran 𝑊 ) |
199 |
198
|
ssbrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → ( 𝑦 𝑠 𝑤 → 𝑦 ∪ ran 𝑊 𝑤 ) ) |
200 |
|
idd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → ( 𝑦 = 𝑤 → 𝑦 = 𝑤 ) ) |
201 |
198
|
ssbrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → ( 𝑤 𝑠 𝑦 → 𝑤 ∪ ran 𝑊 𝑦 ) ) |
202 |
199 200 201
|
3orim123d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → ( ( 𝑦 𝑠 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 𝑠 𝑦 ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) ) |
203 |
193 202
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) |
204 |
127
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) → ( ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ∨ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) ) |
205 |
183 203 204
|
mpjaodan |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) |
206 |
205
|
exp31 |
⊢ ( 𝜑 → ( ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) → ( ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) ) ) |
207 |
206
|
exlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑠 ∃ 𝑡 ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) → ( ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) ) ) |
208 |
162 207
|
syl5bi |
⊢ ( 𝜑 → ( ( 𝑎 ∈ dom 𝑊 ∧ 𝑏 ∈ dom 𝑊 ) → ( ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) ) ) |
209 |
208
|
rexlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ dom 𝑊 ∃ 𝑏 ∈ dom 𝑊 ( 𝑦 ∈ 𝑎 ∧ 𝑤 ∈ 𝑏 ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) ) |
210 |
157 209
|
syl5bi |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) ) |
211 |
210
|
ralrimivv |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) |
212 |
|
dfwe2 |
⊢ ( ∪ ran 𝑊 We 𝑋 ↔ ( ∪ ran 𝑊 Fr 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( 𝑦 ∪ ran 𝑊 𝑤 ∨ 𝑦 = 𝑤 ∨ 𝑤 ∪ ran 𝑊 𝑦 ) ) ) |
213 |
151 211 212
|
sylanbrc |
⊢ ( 𝜑 → ∪ ran 𝑊 We 𝑋 ) |
214 |
1
|
fpwwe2cbv |
⊢ 𝑊 = { 〈 𝑧 , 𝑡 〉 ∣ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑡 ⊆ ( 𝑧 × 𝑧 ) ) ∧ ( 𝑡 We 𝑧 ∧ ∀ 𝑤 ∈ 𝑧 [ ( ◡ 𝑡 “ { 𝑤 } ) / 𝑏 ] ( 𝑏 𝐹 ( 𝑡 ∩ ( 𝑏 × 𝑏 ) ) ) = 𝑤 ) ) } |
215 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝐴 ∈ 𝑉 ) |
216 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → 𝑎 𝑊 𝑠 ) |
217 |
214 215 216
|
fpwwe2lem3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) ∧ 𝑦 ∈ 𝑎 ) → ( ( ◡ 𝑠 “ { 𝑦 } ) 𝐹 ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) = 𝑦 ) |
218 |
217
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( ( ◡ 𝑠 “ { 𝑦 } ) 𝐹 ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) = 𝑦 ) |
219 |
|
cnvimass |
⊢ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ⊆ dom ∪ ran 𝑊 |
220 |
2 18
|
ssexd |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
221 |
220 220
|
xpexd |
⊢ ( 𝜑 → ( 𝑋 × 𝑋 ) ∈ V ) |
222 |
221 38
|
ssexd |
⊢ ( 𝜑 → ∪ ran 𝑊 ∈ V ) |
223 |
222
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ∪ ran 𝑊 ∈ V ) |
224 |
223
|
dmexd |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → dom ∪ ran 𝑊 ∈ V ) |
225 |
|
ssexg |
⊢ ( ( ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ⊆ dom ∪ ran 𝑊 ∧ dom ∪ ran 𝑊 ∈ V ) → ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ∈ V ) |
226 |
219 224 225
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ∈ V ) |
227 |
|
id |
⊢ ( 𝑢 = ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) → 𝑢 = ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ) |
228 |
|
olc |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ) |
229 |
|
df-br |
⊢ ( 𝑧 ∪ ran 𝑊 𝑤 ↔ 〈 𝑧 , 𝑤 〉 ∈ ∪ ran 𝑊 ) |
230 |
|
eluni2 |
⊢ ( 〈 𝑧 , 𝑤 〉 ∈ ∪ ran 𝑊 ↔ ∃ 𝑡 ∈ ran 𝑊 〈 𝑧 , 𝑤 〉 ∈ 𝑡 ) |
231 |
229 230
|
bitri |
⊢ ( 𝑧 ∪ ran 𝑊 𝑤 ↔ ∃ 𝑡 ∈ ran 𝑊 〈 𝑧 , 𝑤 〉 ∈ 𝑡 ) |
232 |
|
df-br |
⊢ ( 𝑧 𝑡 𝑤 ↔ 〈 𝑧 , 𝑤 〉 ∈ 𝑡 ) |
233 |
85
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑡 ⊆ ( 𝑏 × 𝑏 ) ) |
234 |
233
|
ssbrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑧 𝑡 𝑤 → 𝑧 ( 𝑏 × 𝑏 ) 𝑤 ) ) |
235 |
|
brxp |
⊢ ( 𝑧 ( 𝑏 × 𝑏 ) 𝑤 ↔ ( 𝑧 ∈ 𝑏 ∧ 𝑤 ∈ 𝑏 ) ) |
236 |
235
|
simplbi |
⊢ ( 𝑧 ( 𝑏 × 𝑏 ) 𝑤 → 𝑧 ∈ 𝑏 ) |
237 |
234 236
|
syl6 |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑧 𝑡 𝑤 → 𝑧 ∈ 𝑏 ) ) |
238 |
21
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) |
239 |
238
|
ssbrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → ( 𝑤 𝑠 𝑦 → 𝑤 ( 𝑎 × 𝑎 ) 𝑦 ) ) |
240 |
239
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ 𝑤 𝑠 𝑦 ) → 𝑤 ( 𝑎 × 𝑎 ) 𝑦 ) |
241 |
|
brxp |
⊢ ( 𝑤 ( 𝑎 × 𝑎 ) 𝑦 ↔ ( 𝑤 ∈ 𝑎 ∧ 𝑦 ∈ 𝑎 ) ) |
242 |
241
|
simplbi |
⊢ ( 𝑤 ( 𝑎 × 𝑎 ) 𝑦 → 𝑤 ∈ 𝑎 ) |
243 |
240 242
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ 𝑤 𝑠 𝑦 ) → 𝑤 ∈ 𝑎 ) |
244 |
243
|
a1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ 𝑤 𝑠 𝑦 ) → ( 𝑦 ∈ 𝑎 → 𝑤 ∈ 𝑎 ) ) |
245 |
|
elequ1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝑎 ↔ 𝑦 ∈ 𝑎 ) ) |
246 |
245
|
biimprd |
⊢ ( 𝑤 = 𝑦 → ( 𝑦 ∈ 𝑎 → 𝑤 ∈ 𝑎 ) ) |
247 |
246
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ 𝑤 = 𝑦 ) → ( 𝑦 ∈ 𝑎 → 𝑤 ∈ 𝑎 ) ) |
248 |
244 247
|
jaodan |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ) → ( 𝑦 ∈ 𝑎 → 𝑤 ∈ 𝑎 ) ) |
249 |
248
|
impr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) → 𝑤 ∈ 𝑎 ) |
250 |
249
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑤 ∈ 𝑎 ) |
251 |
237 250
|
jctird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑧 𝑡 𝑤 → ( 𝑧 ∈ 𝑏 ∧ 𝑤 ∈ 𝑎 ) ) ) |
252 |
|
brxp |
⊢ ( 𝑧 ( 𝑏 × 𝑎 ) 𝑤 ↔ ( 𝑧 ∈ 𝑏 ∧ 𝑤 ∈ 𝑎 ) ) |
253 |
251 252
|
syl6ibr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑧 𝑡 𝑤 → 𝑧 ( 𝑏 × 𝑎 ) 𝑤 ) ) |
254 |
253
|
ancld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑧 𝑡 𝑤 → ( 𝑧 𝑡 𝑤 ∧ 𝑧 ( 𝑏 × 𝑎 ) 𝑤 ) ) ) |
255 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) |
256 |
255
|
breqd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑧 𝑠 𝑤 ↔ 𝑧 ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) 𝑤 ) ) |
257 |
|
brin |
⊢ ( 𝑧 ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) 𝑤 ↔ ( 𝑧 𝑡 𝑤 ∧ 𝑧 ( 𝑏 × 𝑎 ) 𝑤 ) ) |
258 |
256 257
|
bitrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑧 𝑠 𝑤 ↔ ( 𝑧 𝑡 𝑤 ∧ 𝑧 ( 𝑏 × 𝑎 ) 𝑤 ) ) ) |
259 |
254 258
|
sylibrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ) → ( 𝑧 𝑡 𝑤 → 𝑧 𝑠 𝑤 ) ) |
260 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) |
261 |
260 119
|
eqsstrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → 𝑡 ⊆ 𝑠 ) |
262 |
261
|
ssbrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) → ( 𝑧 𝑡 𝑤 → 𝑧 𝑠 𝑤 ) ) |
263 |
127
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) → ( ( 𝑎 ⊆ 𝑏 ∧ 𝑠 = ( 𝑡 ∩ ( 𝑏 × 𝑎 ) ) ) ∨ ( 𝑏 ⊆ 𝑎 ∧ 𝑡 = ( 𝑠 ∩ ( 𝑎 × 𝑏 ) ) ) ) ) |
264 |
259 262 263
|
mpjaodan |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) → ( 𝑧 𝑡 𝑤 → 𝑧 𝑠 𝑤 ) ) |
265 |
232 264
|
syl5bir |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) ∧ ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ∧ 𝑦 ∈ 𝑎 ) ) → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑡 → 𝑧 𝑠 𝑤 ) ) |
266 |
265
|
exp32 |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑏 𝑊 𝑡 ) ) → ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) → ( 𝑦 ∈ 𝑎 → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑡 → 𝑧 𝑠 𝑤 ) ) ) ) |
267 |
266
|
expr |
⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → ( 𝑏 𝑊 𝑡 → ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) → ( 𝑦 ∈ 𝑎 → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑡 → 𝑧 𝑠 𝑤 ) ) ) ) ) |
268 |
267
|
com24 |
⊢ ( ( 𝜑 ∧ 𝑎 𝑊 𝑠 ) → ( 𝑦 ∈ 𝑎 → ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) → ( 𝑏 𝑊 𝑡 → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑡 → 𝑧 𝑠 𝑤 ) ) ) ) ) |
269 |
268
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) → ( 𝑏 𝑊 𝑡 → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑡 → 𝑧 𝑠 𝑤 ) ) ) ) |
270 |
269
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ) → ( 𝑏 𝑊 𝑡 → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑡 → 𝑧 𝑠 𝑤 ) ) ) |
271 |
270
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ) → ( ∃ 𝑏 𝑏 𝑊 𝑡 → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑡 → 𝑧 𝑠 𝑤 ) ) ) |
272 |
71 271
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ) → ( 𝑡 ∈ ran 𝑊 → ( 〈 𝑧 , 𝑤 〉 ∈ 𝑡 → 𝑧 𝑠 𝑤 ) ) ) |
273 |
272
|
rexlimdv |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ) → ( ∃ 𝑡 ∈ ran 𝑊 〈 𝑧 , 𝑤 〉 ∈ 𝑡 → 𝑧 𝑠 𝑤 ) ) |
274 |
231 273
|
syl5bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ) → ( 𝑧 ∪ ran 𝑊 𝑤 → 𝑧 𝑠 𝑤 ) ) |
275 |
228 274
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ 𝑤 = 𝑦 ) → ( 𝑧 ∪ ran 𝑊 𝑤 → 𝑧 𝑠 𝑤 ) ) |
276 |
275
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( 𝑤 = 𝑦 → ( 𝑧 ∪ ran 𝑊 𝑤 → 𝑧 𝑠 𝑤 ) ) ) |
277 |
276
|
alrimiv |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ∀ 𝑤 ( 𝑤 = 𝑦 → ( 𝑧 ∪ ran 𝑊 𝑤 → 𝑧 𝑠 𝑤 ) ) ) |
278 |
|
breq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑧 ∪ ran 𝑊 𝑤 ↔ 𝑧 ∪ ran 𝑊 𝑦 ) ) |
279 |
|
breq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑧 𝑠 𝑤 ↔ 𝑧 𝑠 𝑦 ) ) |
280 |
278 279
|
imbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑧 ∪ ran 𝑊 𝑤 → 𝑧 𝑠 𝑤 ) ↔ ( 𝑧 ∪ ran 𝑊 𝑦 → 𝑧 𝑠 𝑦 ) ) ) |
281 |
280
|
equsalvw |
⊢ ( ∀ 𝑤 ( 𝑤 = 𝑦 → ( 𝑧 ∪ ran 𝑊 𝑤 → 𝑧 𝑠 𝑤 ) ) ↔ ( 𝑧 ∪ ran 𝑊 𝑦 → 𝑧 𝑠 𝑦 ) ) |
282 |
277 281
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( 𝑧 ∪ ran 𝑊 𝑦 → 𝑧 𝑠 𝑦 ) ) |
283 |
194
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → 𝑠 ∈ ran 𝑊 ) |
284 |
283 197
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → 𝑠 ⊆ ∪ ran 𝑊 ) |
285 |
284
|
ssbrd |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( 𝑧 𝑠 𝑦 → 𝑧 ∪ ran 𝑊 𝑦 ) ) |
286 |
282 285
|
impbid |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( 𝑧 ∪ ran 𝑊 𝑦 ↔ 𝑧 𝑠 𝑦 ) ) |
287 |
|
vex |
⊢ 𝑧 ∈ V |
288 |
287
|
eliniseg |
⊢ ( 𝑦 ∈ V → ( 𝑧 ∈ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ↔ 𝑧 ∪ ran 𝑊 𝑦 ) ) |
289 |
288
|
elv |
⊢ ( 𝑧 ∈ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ↔ 𝑧 ∪ ran 𝑊 𝑦 ) |
290 |
287
|
eliniseg |
⊢ ( 𝑦 ∈ V → ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ↔ 𝑧 𝑠 𝑦 ) ) |
291 |
290
|
elv |
⊢ ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ↔ 𝑧 𝑠 𝑦 ) |
292 |
286 289 291
|
3bitr4g |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( 𝑧 ∈ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ↔ 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ) |
293 |
292
|
eqrdv |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) = ( ◡ 𝑠 “ { 𝑦 } ) ) |
294 |
227 293
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ 𝑢 = ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ) → 𝑢 = ( ◡ 𝑠 “ { 𝑦 } ) ) |
295 |
294
|
sqxpeqd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ 𝑢 = ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ) → ( 𝑢 × 𝑢 ) = ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) |
296 |
295
|
ineq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ 𝑢 = ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ) → ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) = ( ∪ ran 𝑊 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) |
297 |
|
relinxp |
⊢ Rel ( ∪ ran 𝑊 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) |
298 |
|
relinxp |
⊢ Rel ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) |
299 |
|
vex |
⊢ 𝑤 ∈ V |
300 |
299
|
eliniseg |
⊢ ( 𝑦 ∈ V → ( 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ↔ 𝑤 𝑠 𝑦 ) ) |
301 |
290 300
|
anbi12d |
⊢ ( 𝑦 ∈ V → ( ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ∧ 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ↔ ( 𝑧 𝑠 𝑦 ∧ 𝑤 𝑠 𝑦 ) ) ) |
302 |
301
|
elv |
⊢ ( ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ∧ 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ↔ ( 𝑧 𝑠 𝑦 ∧ 𝑤 𝑠 𝑦 ) ) |
303 |
|
orc |
⊢ ( 𝑤 𝑠 𝑦 → ( 𝑤 𝑠 𝑦 ∨ 𝑤 = 𝑦 ) ) |
304 |
303 274
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ 𝑤 𝑠 𝑦 ) → ( 𝑧 ∪ ran 𝑊 𝑤 → 𝑧 𝑠 𝑤 ) ) |
305 |
304
|
adantrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑧 𝑠 𝑦 ∧ 𝑤 𝑠 𝑦 ) ) → ( 𝑧 ∪ ran 𝑊 𝑤 → 𝑧 𝑠 𝑤 ) ) |
306 |
284
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑧 𝑠 𝑦 ∧ 𝑤 𝑠 𝑦 ) ) → 𝑠 ⊆ ∪ ran 𝑊 ) |
307 |
306
|
ssbrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑧 𝑠 𝑦 ∧ 𝑤 𝑠 𝑦 ) ) → ( 𝑧 𝑠 𝑤 → 𝑧 ∪ ran 𝑊 𝑤 ) ) |
308 |
305 307
|
impbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑧 𝑠 𝑦 ∧ 𝑤 𝑠 𝑦 ) ) → ( 𝑧 ∪ ran 𝑊 𝑤 ↔ 𝑧 𝑠 𝑤 ) ) |
309 |
302 308
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ∧ 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ) → ( 𝑧 ∪ ran 𝑊 𝑤 ↔ 𝑧 𝑠 𝑤 ) ) |
310 |
309
|
pm5.32da |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( ( ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ∧ 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ∧ 𝑧 ∪ ran 𝑊 𝑤 ) ↔ ( ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ∧ 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ∧ 𝑧 𝑠 𝑤 ) ) ) |
311 |
|
df-br |
⊢ ( 𝑧 ( ∪ ran 𝑊 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) 𝑤 ↔ 〈 𝑧 , 𝑤 〉 ∈ ( ∪ ran 𝑊 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) |
312 |
|
brinxp2 |
⊢ ( 𝑧 ( ∪ ran 𝑊 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) 𝑤 ↔ ( ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ∧ 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ∧ 𝑧 ∪ ran 𝑊 𝑤 ) ) |
313 |
311 312
|
bitr3i |
⊢ ( 〈 𝑧 , 𝑤 〉 ∈ ( ∪ ran 𝑊 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ↔ ( ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ∧ 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ∧ 𝑧 ∪ ran 𝑊 𝑤 ) ) |
314 |
|
df-br |
⊢ ( 𝑧 ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) 𝑤 ↔ 〈 𝑧 , 𝑤 〉 ∈ ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) |
315 |
|
brinxp2 |
⊢ ( 𝑧 ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) 𝑤 ↔ ( ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ∧ 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ∧ 𝑧 𝑠 𝑤 ) ) |
316 |
314 315
|
bitr3i |
⊢ ( 〈 𝑧 , 𝑤 〉 ∈ ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ↔ ( ( 𝑧 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ∧ 𝑤 ∈ ( ◡ 𝑠 “ { 𝑦 } ) ) ∧ 𝑧 𝑠 𝑤 ) ) |
317 |
310 313 316
|
3bitr4g |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( 〈 𝑧 , 𝑤 〉 ∈ ( ∪ ran 𝑊 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ↔ 〈 𝑧 , 𝑤 〉 ∈ ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) ) |
318 |
297 298 317
|
eqrelrdv |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( ∪ ran 𝑊 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) = ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) |
319 |
318
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ 𝑢 = ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ) → ( ∪ ran 𝑊 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) = ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) |
320 |
296 319
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ 𝑢 = ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ) → ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) = ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) |
321 |
294 320
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ 𝑢 = ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ) → ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = ( ( ◡ 𝑠 “ { 𝑦 } ) 𝐹 ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) ) |
322 |
321
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) ∧ 𝑢 = ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) ) → ( ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ( ( ◡ 𝑠 “ { 𝑦 } ) 𝐹 ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) = 𝑦 ) ) |
323 |
226 322
|
sbcied |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → ( [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ( ( ◡ 𝑠 “ { 𝑦 } ) 𝐹 ( 𝑠 ∩ ( ( ◡ 𝑠 “ { 𝑦 } ) × ( ◡ 𝑠 “ { 𝑦 } ) ) ) ) = 𝑦 ) ) |
324 |
218 323
|
mpbird |
⊢ ( ( 𝜑 ∧ ( 𝑎 𝑊 𝑠 ∧ 𝑦 ∈ 𝑎 ) ) → [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) |
325 |
324
|
exp32 |
⊢ ( 𝜑 → ( 𝑎 𝑊 𝑠 → ( 𝑦 ∈ 𝑎 → [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
326 |
325
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑠 𝑎 𝑊 𝑠 → ( 𝑦 ∈ 𝑎 → [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
327 |
6 326
|
syl5bi |
⊢ ( 𝜑 → ( 𝑎 ∈ dom 𝑊 → ( 𝑦 ∈ 𝑎 → [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
328 |
327
|
rexlimdv |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ dom 𝑊 𝑦 ∈ 𝑎 → [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
329 |
45 328
|
syl5bi |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑋 → [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
330 |
329
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑋 [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) |
331 |
213 330
|
jca |
⊢ ( 𝜑 → ( ∪ ran 𝑊 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
332 |
1 2
|
fpwwe2lem2 |
⊢ ( 𝜑 → ( 𝑋 𝑊 ∪ ran 𝑊 ↔ ( ( 𝑋 ⊆ 𝐴 ∧ ∪ ran 𝑊 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( ∪ ran 𝑊 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ ∪ ran 𝑊 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ∪ ran 𝑊 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
333 |
39 331 332
|
mpbir2and |
⊢ ( 𝜑 → 𝑋 𝑊 ∪ ran 𝑊 ) |
334 |
22
|
releldmi |
⊢ ( 𝑋 𝑊 ∪ ran 𝑊 → 𝑋 ∈ dom 𝑊 ) |
335 |
333 334
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ dom 𝑊 ) |