| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fpwwe2.1 | 
							⊢ 𝑊  =  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 ) )  ∧  ( 𝑟  We  𝑥  ∧  ∀ 𝑦  ∈  𝑥 [ ( ◡ 𝑟  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( 𝑟  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) }  | 
						
						
							| 2 | 
							
								
							 | 
							fpwwe2.2 | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑉 )  | 
						
						
							| 3 | 
							
								
							 | 
							fpwwe2.3 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  →  ( 𝑥 𝐹 𝑟 )  ∈  𝐴 )  | 
						
						
							| 4 | 
							
								
							 | 
							fpwwe2.4 | 
							⊢ 𝑋  =  ∪  dom  𝑊  | 
						
						
							| 5 | 
							
								
							 | 
							vex | 
							⊢ 𝑎  ∈  V  | 
						
						
							| 6 | 
							
								5
							 | 
							eldm | 
							⊢ ( 𝑎  ∈  dom  𝑊  ↔  ∃ 𝑠 𝑎 𝑊 𝑠 )  | 
						
						
							| 7 | 
							
								1 2
							 | 
							fpwwe2lem2 | 
							⊢ ( 𝜑  →  ( 𝑎 𝑊 𝑠  ↔  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑦  ∈  𝑎 [ ( ◡ 𝑠  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( 𝑠  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							simprbda | 
							⊢ ( ( 𝜑  ∧  𝑎 𝑊 𝑠 )  →  ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							simpld | 
							⊢ ( ( 𝜑  ∧  𝑎 𝑊 𝑠 )  →  𝑎  ⊆  𝐴 )  | 
						
						
							| 10 | 
							
								
							 | 
							velpw | 
							⊢ ( 𝑎  ∈  𝒫  𝐴  ↔  𝑎  ⊆  𝐴 )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							sylibr | 
							⊢ ( ( 𝜑  ∧  𝑎 𝑊 𝑠 )  →  𝑎  ∈  𝒫  𝐴 )  | 
						
						
							| 12 | 
							
								11
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝑎 𝑊 𝑠  →  𝑎  ∈  𝒫  𝐴 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							exlimdv | 
							⊢ ( 𝜑  →  ( ∃ 𝑠 𝑎 𝑊 𝑠  →  𝑎  ∈  𝒫  𝐴 ) )  | 
						
						
							| 14 | 
							
								6 13
							 | 
							biimtrid | 
							⊢ ( 𝜑  →  ( 𝑎  ∈  dom  𝑊  →  𝑎  ∈  𝒫  𝐴 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							ssrdv | 
							⊢ ( 𝜑  →  dom  𝑊  ⊆  𝒫  𝐴 )  | 
						
						
							| 16 | 
							
								
							 | 
							sspwuni | 
							⊢ ( dom  𝑊  ⊆  𝒫  𝐴  ↔  ∪  dom  𝑊  ⊆  𝐴 )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							sylib | 
							⊢ ( 𝜑  →  ∪  dom  𝑊  ⊆  𝐴 )  | 
						
						
							| 18 | 
							
								4 17
							 | 
							eqsstrid | 
							⊢ ( 𝜑  →  𝑋  ⊆  𝐴 )  | 
						
						
							| 19 | 
							
								
							 | 
							vex | 
							⊢ 𝑠  ∈  V  | 
						
						
							| 20 | 
							
								19
							 | 
							elrn | 
							⊢ ( 𝑠  ∈  ran  𝑊  ↔  ∃ 𝑎 𝑎 𝑊 𝑠 )  | 
						
						
							| 21 | 
							
								8
							 | 
							simprd | 
							⊢ ( ( 𝜑  ∧  𝑎 𝑊 𝑠 )  →  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  | 
						
						
							| 22 | 
							
								1
							 | 
							relopabiv | 
							⊢ Rel  𝑊  | 
						
						
							| 23 | 
							
								22
							 | 
							releldmi | 
							⊢ ( 𝑎 𝑊 𝑠  →  𝑎  ∈  dom  𝑊 )  | 
						
						
							| 24 | 
							
								23
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑎 𝑊 𝑠 )  →  𝑎  ∈  dom  𝑊 )  | 
						
						
							| 25 | 
							
								
							 | 
							elssuni | 
							⊢ ( 𝑎  ∈  dom  𝑊  →  𝑎  ⊆  ∪  dom  𝑊 )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑎 𝑊 𝑠 )  →  𝑎  ⊆  ∪  dom  𝑊 )  | 
						
						
							| 27 | 
							
								26 4
							 | 
							sseqtrrdi | 
							⊢ ( ( 𝜑  ∧  𝑎 𝑊 𝑠 )  →  𝑎  ⊆  𝑋 )  | 
						
						
							| 28 | 
							
								
							 | 
							xpss12 | 
							⊢ ( ( 𝑎  ⊆  𝑋  ∧  𝑎  ⊆  𝑋 )  →  ( 𝑎  ×  𝑎 )  ⊆  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 29 | 
							
								27 27 28
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑎 𝑊 𝑠 )  →  ( 𝑎  ×  𝑎 )  ⊆  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 30 | 
							
								21 29
							 | 
							sstrd | 
							⊢ ( ( 𝜑  ∧  𝑎 𝑊 𝑠 )  →  𝑠  ⊆  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							velpw | 
							⊢ ( 𝑠  ∈  𝒫  ( 𝑋  ×  𝑋 )  ↔  𝑠  ⊆  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							sylibr | 
							⊢ ( ( 𝜑  ∧  𝑎 𝑊 𝑠 )  →  𝑠  ∈  𝒫  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝑎 𝑊 𝑠  →  𝑠  ∈  𝒫  ( 𝑋  ×  𝑋 ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							exlimdv | 
							⊢ ( 𝜑  →  ( ∃ 𝑎 𝑎 𝑊 𝑠  →  𝑠  ∈  𝒫  ( 𝑋  ×  𝑋 ) ) )  | 
						
						
							| 35 | 
							
								20 34
							 | 
							biimtrid | 
							⊢ ( 𝜑  →  ( 𝑠  ∈  ran  𝑊  →  𝑠  ∈  𝒫  ( 𝑋  ×  𝑋 ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							ssrdv | 
							⊢ ( 𝜑  →  ran  𝑊  ⊆  𝒫  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							sspwuni | 
							⊢ ( ran  𝑊  ⊆  𝒫  ( 𝑋  ×  𝑋 )  ↔  ∪  ran  𝑊  ⊆  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							sylib | 
							⊢ ( 𝜑  →  ∪  ran  𝑊  ⊆  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 39 | 
							
								18 38
							 | 
							jca | 
							⊢ ( 𝜑  →  ( 𝑋  ⊆  𝐴  ∧  ∪  ran  𝑊  ⊆  ( 𝑋  ×  𝑋 ) ) )  | 
						
						
							| 40 | 
							
								
							 | 
							n0 | 
							⊢ ( 𝑛  ≠  ∅  ↔  ∃ 𝑦 𝑦  ∈  𝑛 )  | 
						
						
							| 41 | 
							
								
							 | 
							ssel2 | 
							⊢ ( ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 )  →  𝑦  ∈  𝑋 )  | 
						
						
							| 42 | 
							
								41
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  →  𝑦  ∈  𝑋 )  | 
						
						
							| 43 | 
							
								4
							 | 
							eleq2i | 
							⊢ ( 𝑦  ∈  𝑋  ↔  𝑦  ∈  ∪  dom  𝑊 )  | 
						
						
							| 44 | 
							
								
							 | 
							eluni2 | 
							⊢ ( 𝑦  ∈  ∪  dom  𝑊  ↔  ∃ 𝑎  ∈  dom  𝑊 𝑦  ∈  𝑎 )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							bitri | 
							⊢ ( 𝑦  ∈  𝑋  ↔  ∃ 𝑎  ∈  dom  𝑊 𝑦  ∈  𝑎 )  | 
						
						
							| 46 | 
							
								42 45
							 | 
							sylib | 
							⊢ ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  →  ∃ 𝑎  ∈  dom  𝑊 𝑦  ∈  𝑎 )  | 
						
						
							| 47 | 
							
								5
							 | 
							inex2 | 
							⊢ ( 𝑛  ∩  𝑎 )  ∈  V  | 
						
						
							| 48 | 
							
								47
							 | 
							a1i | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ( 𝑛  ∩  𝑎 )  ∈  V )  | 
						
						
							| 49 | 
							
								7
							 | 
							simplbda | 
							⊢ ( ( 𝜑  ∧  𝑎 𝑊 𝑠 )  →  ( 𝑠  We  𝑎  ∧  ∀ 𝑦  ∈  𝑎 [ ( ◡ 𝑠  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( 𝑠  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							simpld | 
							⊢ ( ( 𝜑  ∧  𝑎 𝑊 𝑠 )  →  𝑠  We  𝑎 )  | 
						
						
							| 51 | 
							
								50
							 | 
							ad2ant2r | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  𝑠  We  𝑎 )  | 
						
						
							| 52 | 
							
								
							 | 
							wefr | 
							⊢ ( 𝑠  We  𝑎  →  𝑠  Fr  𝑎 )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  𝑠  Fr  𝑎 )  | 
						
						
							| 54 | 
							
								
							 | 
							inss2 | 
							⊢ ( 𝑛  ∩  𝑎 )  ⊆  𝑎  | 
						
						
							| 55 | 
							
								54
							 | 
							a1i | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ( 𝑛  ∩  𝑎 )  ⊆  𝑎 )  | 
						
						
							| 56 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  𝑦  ∈  𝑛 )  | 
						
						
							| 57 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  𝑦  ∈  𝑎 )  | 
						
						
							| 58 | 
							
								
							 | 
							inelcm | 
							⊢ ( ( 𝑦  ∈  𝑛  ∧  𝑦  ∈  𝑎 )  →  ( 𝑛  ∩  𝑎 )  ≠  ∅ )  | 
						
						
							| 59 | 
							
								56 57 58
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ( 𝑛  ∩  𝑎 )  ≠  ∅ )  | 
						
						
							| 60 | 
							
								
							 | 
							fri | 
							⊢ ( ( ( ( 𝑛  ∩  𝑎 )  ∈  V  ∧  𝑠  Fr  𝑎 )  ∧  ( ( 𝑛  ∩  𝑎 )  ⊆  𝑎  ∧  ( 𝑛  ∩  𝑎 )  ≠  ∅ ) )  →  ∃ 𝑣  ∈  ( 𝑛  ∩  𝑎 ) ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 )  | 
						
						
							| 61 | 
							
								48 53 55 59 60
							 | 
							syl22anc | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ∃ 𝑣  ∈  ( 𝑛  ∩  𝑎 ) ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 )  | 
						
						
							| 62 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  →  𝑣  ∈  ( 𝑛  ∩  𝑎 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							elin1d | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  →  𝑣  ∈  𝑛 )  | 
						
						
							| 64 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  𝑤  ∈  𝑛 )  →  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 )  | 
						
						
							| 65 | 
							
								
							 | 
							ralnex | 
							⊢ ( ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣  ↔  ¬  ∃ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) 𝑧 𝑠 𝑣 )  | 
						
						
							| 66 | 
							
								64 65
							 | 
							sylib | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  𝑤  ∈  𝑛 )  →  ¬  ∃ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) 𝑧 𝑠 𝑣 )  | 
						
						
							| 67 | 
							
								
							 | 
							df-br | 
							⊢ ( 𝑤 ∪  ran  𝑊 𝑣  ↔  〈 𝑤 ,  𝑣 〉  ∈  ∪  ran  𝑊 )  | 
						
						
							| 68 | 
							
								
							 | 
							eluni2 | 
							⊢ ( 〈 𝑤 ,  𝑣 〉  ∈  ∪  ran  𝑊  ↔  ∃ 𝑡  ∈  ran  𝑊 〈 𝑤 ,  𝑣 〉  ∈  𝑡 )  | 
						
						
							| 69 | 
							
								67 68
							 | 
							bitri | 
							⊢ ( 𝑤 ∪  ran  𝑊 𝑣  ↔  ∃ 𝑡  ∈  ran  𝑊 〈 𝑤 ,  𝑣 〉  ∈  𝑡 )  | 
						
						
							| 70 | 
							
								
							 | 
							vex | 
							⊢ 𝑡  ∈  V  | 
						
						
							| 71 | 
							
								70
							 | 
							elrn | 
							⊢ ( 𝑡  ∈  ran  𝑊  ↔  ∃ 𝑏 𝑏 𝑊 𝑡 )  | 
						
						
							| 72 | 
							
								
							 | 
							df-br | 
							⊢ ( 𝑤 𝑡 𝑣  ↔  〈 𝑤 ,  𝑣 〉  ∈  𝑡 )  | 
						
						
							| 73 | 
							
								
							 | 
							simprll | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  →  𝑤  ∈  𝑛 )  | 
						
						
							| 74 | 
							
								73
							 | 
							adantr | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑤  ∈  𝑛 )  | 
						
						
							| 75 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  →  𝑤 𝑡 𝑣 )  | 
						
						
							| 76 | 
							
								
							 | 
							simp-4l | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  →  𝜑 )  | 
						
						
							| 77 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  𝑎 𝑊 𝑠 )  | 
						
						
							| 78 | 
							
								77
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  →  𝑎 𝑊 𝑠 )  | 
						
						
							| 79 | 
							
								
							 | 
							simprlr | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  →  𝑏 𝑊 𝑡 )  | 
						
						
							| 80 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  →  𝑏 𝑊 𝑡 )  | 
						
						
							| 81 | 
							
								1 2
							 | 
							fpwwe2lem2 | 
							⊢ ( 𝜑  →  ( 𝑏 𝑊 𝑡  ↔  ( ( 𝑏  ⊆  𝐴  ∧  𝑡  ⊆  ( 𝑏  ×  𝑏 ) )  ∧  ( 𝑡  We  𝑏  ∧  ∀ 𝑦  ∈  𝑏 [ ( ◡ 𝑡  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( 𝑡  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  →  ( 𝑏 𝑊 𝑡  ↔  ( ( 𝑏  ⊆  𝐴  ∧  𝑡  ⊆  ( 𝑏  ×  𝑏 ) )  ∧  ( 𝑡  We  𝑏  ∧  ∀ 𝑦  ∈  𝑏 [ ( ◡ 𝑡  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( 𝑡  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) ) )  | 
						
						
							| 83 | 
							
								80 82
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  →  ( ( 𝑏  ⊆  𝐴  ∧  𝑡  ⊆  ( 𝑏  ×  𝑏 ) )  ∧  ( 𝑡  We  𝑏  ∧  ∀ 𝑦  ∈  𝑏 [ ( ◡ 𝑡  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( 𝑡  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							simpld | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  →  ( 𝑏  ⊆  𝐴  ∧  𝑡  ⊆  ( 𝑏  ×  𝑏 ) ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							simprd | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  →  𝑡  ⊆  ( 𝑏  ×  𝑏 ) )  | 
						
						
							| 86 | 
							
								76 78 79 85
							 | 
							syl12anc | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  →  𝑡  ⊆  ( 𝑏  ×  𝑏 ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							ssbrd | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  →  ( 𝑤 𝑡 𝑣  →  𝑤 ( 𝑏  ×  𝑏 ) 𝑣 ) )  | 
						
						
							| 88 | 
							
								75 87
							 | 
							mpd | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  →  𝑤 ( 𝑏  ×  𝑏 ) 𝑣 )  | 
						
						
							| 89 | 
							
								
							 | 
							brxp | 
							⊢ ( 𝑤 ( 𝑏  ×  𝑏 ) 𝑣  ↔  ( 𝑤  ∈  𝑏  ∧  𝑣  ∈  𝑏 ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							simplbi | 
							⊢ ( 𝑤 ( 𝑏  ×  𝑏 ) 𝑣  →  𝑤  ∈  𝑏 )  | 
						
						
							| 91 | 
							
								88 90
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  →  𝑤  ∈  𝑏 )  | 
						
						
							| 92 | 
							
								91
							 | 
							adantr | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑤  ∈  𝑏 )  | 
						
						
							| 93 | 
							
								62
							 | 
							elin2d | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  →  𝑣  ∈  𝑎 )  | 
						
						
							| 94 | 
							
								93
							 | 
							ad2antrr | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑣  ∈  𝑎 )  | 
						
						
							| 95 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑤 𝑡 𝑣 )  | 
						
						
							| 96 | 
							
								
							 | 
							brinxp2 | 
							⊢ ( 𝑤 ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) 𝑣  ↔  ( ( 𝑤  ∈  𝑏  ∧  𝑣  ∈  𝑎 )  ∧  𝑤 𝑡 𝑣 ) )  | 
						
						
							| 97 | 
							
								92 94 95 96
							 | 
							syl21anbrc | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑤 ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) 𝑣 )  | 
						
						
							| 98 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							breqd | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  ( 𝑤 𝑠 𝑣  ↔  𝑤 ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) 𝑣 ) )  | 
						
						
							| 100 | 
							
								97 99
							 | 
							mpbird | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑤 𝑠 𝑣 )  | 
						
						
							| 101 | 
							
								76 78 21
							 | 
							syl2anc | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  →  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							adantr | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							ssbrd | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  ( 𝑤 𝑠 𝑣  →  𝑤 ( 𝑎  ×  𝑎 ) 𝑣 ) )  | 
						
						
							| 104 | 
							
								100 103
							 | 
							mpd | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑤 ( 𝑎  ×  𝑎 ) 𝑣 )  | 
						
						
							| 105 | 
							
								
							 | 
							brxp | 
							⊢ ( 𝑤 ( 𝑎  ×  𝑎 ) 𝑣  ↔  ( 𝑤  ∈  𝑎  ∧  𝑣  ∈  𝑎 ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							simplbi | 
							⊢ ( 𝑤 ( 𝑎  ×  𝑎 ) 𝑣  →  𝑤  ∈  𝑎 )  | 
						
						
							| 107 | 
							
								104 106
							 | 
							syl | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑤  ∈  𝑎 )  | 
						
						
							| 108 | 
							
								74 107
							 | 
							elind | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑤  ∈  ( 𝑛  ∩  𝑎 ) )  | 
						
						
							| 109 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑧  =  𝑤  →  ( 𝑧 𝑠 𝑣  ↔  𝑤 𝑠 𝑣 ) )  | 
						
						
							| 110 | 
							
								109
							 | 
							rspcev | 
							⊢ ( ( 𝑤  ∈  ( 𝑛  ∩  𝑎 )  ∧  𝑤 𝑠 𝑣 )  →  ∃ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) 𝑧 𝑠 𝑣 )  | 
						
						
							| 111 | 
							
								108 100 110
							 | 
							syl2anc | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  ∃ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) 𝑧 𝑠 𝑣 )  | 
						
						
							| 112 | 
							
								73
							 | 
							adantr | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑤  ∈  𝑛 )  | 
						
						
							| 113 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑏  ⊆  𝑎 )  | 
						
						
							| 114 | 
							
								91
							 | 
							adantr | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑤  ∈  𝑏 )  | 
						
						
							| 115 | 
							
								113 114
							 | 
							sseldd | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑤  ∈  𝑎 )  | 
						
						
							| 116 | 
							
								112 115
							 | 
							elind | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑤  ∈  ( 𝑛  ∩  𝑎 ) )  | 
						
						
							| 117 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑤 𝑡 𝑣 )  | 
						
						
							| 118 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) )  | 
						
						
							| 119 | 
							
								
							 | 
							inss1 | 
							⊢ ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) )  ⊆  𝑠  | 
						
						
							| 120 | 
							
								118 119
							 | 
							eqsstrdi | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑡  ⊆  𝑠 )  | 
						
						
							| 121 | 
							
								120
							 | 
							ssbrd | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  ( 𝑤 𝑡 𝑣  →  𝑤 𝑠 𝑣 ) )  | 
						
						
							| 122 | 
							
								117 121
							 | 
							mpd | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑤 𝑠 𝑣 )  | 
						
						
							| 123 | 
							
								116 122 110
							 | 
							syl2anc | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  ∃ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) 𝑧 𝑠 𝑣 )  | 
						
						
							| 124 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  →  𝐴  ∈  𝑉 )  | 
						
						
							| 125 | 
							
								3
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  →  ( 𝑥 𝐹 𝑟 )  ∈  𝐴 )  | 
						
						
							| 126 | 
							
								
							 | 
							simprl | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  →  𝑎 𝑊 𝑠 )  | 
						
						
							| 127 | 
							
								1 124 125 126 80
							 | 
							fpwwe2lem9 | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  →  ( ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) )  ∨  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) ) )  | 
						
						
							| 128 | 
							
								76 78 79 127
							 | 
							syl12anc | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  →  ( ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) )  ∨  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) ) )  | 
						
						
							| 129 | 
							
								111 123 128
							 | 
							mpjaodan | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 )  ∧  𝑤 𝑡 𝑣 ) )  →  ∃ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) 𝑧 𝑠 𝑣 )  | 
						
						
							| 130 | 
							
								129
							 | 
							expr | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 ) )  →  ( 𝑤 𝑡 𝑣  →  ∃ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) 𝑧 𝑠 𝑣 ) )  | 
						
						
							| 131 | 
							
								72 130
							 | 
							biimtrrid | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  ( 𝑤  ∈  𝑛  ∧  𝑏 𝑊 𝑡 ) )  →  ( 〈 𝑤 ,  𝑣 〉  ∈  𝑡  →  ∃ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) 𝑧 𝑠 𝑣 ) )  | 
						
						
							| 132 | 
							
								131
							 | 
							expr | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  𝑤  ∈  𝑛 )  →  ( 𝑏 𝑊 𝑡  →  ( 〈 𝑤 ,  𝑣 〉  ∈  𝑡  →  ∃ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) 𝑧 𝑠 𝑣 ) ) )  | 
						
						
							| 133 | 
							
								132
							 | 
							exlimdv | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  𝑤  ∈  𝑛 )  →  ( ∃ 𝑏 𝑏 𝑊 𝑡  →  ( 〈 𝑤 ,  𝑣 〉  ∈  𝑡  →  ∃ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) 𝑧 𝑠 𝑣 ) ) )  | 
						
						
							| 134 | 
							
								71 133
							 | 
							biimtrid | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  𝑤  ∈  𝑛 )  →  ( 𝑡  ∈  ran  𝑊  →  ( 〈 𝑤 ,  𝑣 〉  ∈  𝑡  →  ∃ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) 𝑧 𝑠 𝑣 ) ) )  | 
						
						
							| 135 | 
							
								134
							 | 
							rexlimdv | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  𝑤  ∈  𝑛 )  →  ( ∃ 𝑡  ∈  ran  𝑊 〈 𝑤 ,  𝑣 〉  ∈  𝑡  →  ∃ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) 𝑧 𝑠 𝑣 ) )  | 
						
						
							| 136 | 
							
								69 135
							 | 
							biimtrid | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  𝑤  ∈  𝑛 )  →  ( 𝑤 ∪  ran  𝑊 𝑣  →  ∃ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) 𝑧 𝑠 𝑣 ) )  | 
						
						
							| 137 | 
							
								66 136
							 | 
							mtod | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  ∧  𝑤  ∈  𝑛 )  →  ¬  𝑤 ∪  ran  𝑊 𝑣 )  | 
						
						
							| 138 | 
							
								137
							 | 
							ralrimiva | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑣  ∈  ( 𝑛  ∩  𝑎 )  ∧  ∀ 𝑧  ∈  ( 𝑛  ∩  𝑎 ) ¬  𝑧 𝑠 𝑣 ) )  →  ∀ 𝑤  ∈  𝑛 ¬  𝑤 ∪  ran  𝑊 𝑣 )  | 
						
						
							| 139 | 
							
								61 63 138
							 | 
							reximssdv | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ∃ 𝑣  ∈  𝑛 ∀ 𝑤  ∈  𝑛 ¬  𝑤 ∪  ran  𝑊 𝑣 )  | 
						
						
							| 140 | 
							
								139
							 | 
							exp32 | 
							⊢ ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  →  ( 𝑎 𝑊 𝑠  →  ( 𝑦  ∈  𝑎  →  ∃ 𝑣  ∈  𝑛 ∀ 𝑤  ∈  𝑛 ¬  𝑤 ∪  ran  𝑊 𝑣 ) ) )  | 
						
						
							| 141 | 
							
								140
							 | 
							exlimdv | 
							⊢ ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  →  ( ∃ 𝑠 𝑎 𝑊 𝑠  →  ( 𝑦  ∈  𝑎  →  ∃ 𝑣  ∈  𝑛 ∀ 𝑤  ∈  𝑛 ¬  𝑤 ∪  ran  𝑊 𝑣 ) ) )  | 
						
						
							| 142 | 
							
								6 141
							 | 
							biimtrid | 
							⊢ ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  →  ( 𝑎  ∈  dom  𝑊  →  ( 𝑦  ∈  𝑎  →  ∃ 𝑣  ∈  𝑛 ∀ 𝑤  ∈  𝑛 ¬  𝑤 ∪  ran  𝑊 𝑣 ) ) )  | 
						
						
							| 143 | 
							
								142
							 | 
							rexlimdv | 
							⊢ ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  →  ( ∃ 𝑎  ∈  dom  𝑊 𝑦  ∈  𝑎  →  ∃ 𝑣  ∈  𝑛 ∀ 𝑤  ∈  𝑛 ¬  𝑤 ∪  ran  𝑊 𝑣 ) )  | 
						
						
							| 144 | 
							
								46 143
							 | 
							mpd | 
							⊢ ( ( 𝜑  ∧  ( 𝑛  ⊆  𝑋  ∧  𝑦  ∈  𝑛 ) )  →  ∃ 𝑣  ∈  𝑛 ∀ 𝑤  ∈  𝑛 ¬  𝑤 ∪  ran  𝑊 𝑣 )  | 
						
						
							| 145 | 
							
								144
							 | 
							expr | 
							⊢ ( ( 𝜑  ∧  𝑛  ⊆  𝑋 )  →  ( 𝑦  ∈  𝑛  →  ∃ 𝑣  ∈  𝑛 ∀ 𝑤  ∈  𝑛 ¬  𝑤 ∪  ran  𝑊 𝑣 ) )  | 
						
						
							| 146 | 
							
								145
							 | 
							exlimdv | 
							⊢ ( ( 𝜑  ∧  𝑛  ⊆  𝑋 )  →  ( ∃ 𝑦 𝑦  ∈  𝑛  →  ∃ 𝑣  ∈  𝑛 ∀ 𝑤  ∈  𝑛 ¬  𝑤 ∪  ran  𝑊 𝑣 ) )  | 
						
						
							| 147 | 
							
								40 146
							 | 
							biimtrid | 
							⊢ ( ( 𝜑  ∧  𝑛  ⊆  𝑋 )  →  ( 𝑛  ≠  ∅  →  ∃ 𝑣  ∈  𝑛 ∀ 𝑤  ∈  𝑛 ¬  𝑤 ∪  ran  𝑊 𝑣 ) )  | 
						
						
							| 148 | 
							
								147
							 | 
							expimpd | 
							⊢ ( 𝜑  →  ( ( 𝑛  ⊆  𝑋  ∧  𝑛  ≠  ∅ )  →  ∃ 𝑣  ∈  𝑛 ∀ 𝑤  ∈  𝑛 ¬  𝑤 ∪  ran  𝑊 𝑣 ) )  | 
						
						
							| 149 | 
							
								148
							 | 
							alrimiv | 
							⊢ ( 𝜑  →  ∀ 𝑛 ( ( 𝑛  ⊆  𝑋  ∧  𝑛  ≠  ∅ )  →  ∃ 𝑣  ∈  𝑛 ∀ 𝑤  ∈  𝑛 ¬  𝑤 ∪  ran  𝑊 𝑣 ) )  | 
						
						
							| 150 | 
							
								
							 | 
							df-fr | 
							⊢ ( ∪  ran  𝑊  Fr  𝑋  ↔  ∀ 𝑛 ( ( 𝑛  ⊆  𝑋  ∧  𝑛  ≠  ∅ )  →  ∃ 𝑣  ∈  𝑛 ∀ 𝑤  ∈  𝑛 ¬  𝑤 ∪  ran  𝑊 𝑣 ) )  | 
						
						
							| 151 | 
							
								149 150
							 | 
							sylibr | 
							⊢ ( 𝜑  →  ∪  ran  𝑊  Fr  𝑋 )  | 
						
						
							| 152 | 
							
								4
							 | 
							eleq2i | 
							⊢ ( 𝑤  ∈  𝑋  ↔  𝑤  ∈  ∪  dom  𝑊 )  | 
						
						
							| 153 | 
							
								
							 | 
							eluni2 | 
							⊢ ( 𝑤  ∈  ∪  dom  𝑊  ↔  ∃ 𝑏  ∈  dom  𝑊 𝑤  ∈  𝑏 )  | 
						
						
							| 154 | 
							
								152 153
							 | 
							bitri | 
							⊢ ( 𝑤  ∈  𝑋  ↔  ∃ 𝑏  ∈  dom  𝑊 𝑤  ∈  𝑏 )  | 
						
						
							| 155 | 
							
								45 154
							 | 
							anbi12i | 
							⊢ ( ( 𝑦  ∈  𝑋  ∧  𝑤  ∈  𝑋 )  ↔  ( ∃ 𝑎  ∈  dom  𝑊 𝑦  ∈  𝑎  ∧  ∃ 𝑏  ∈  dom  𝑊 𝑤  ∈  𝑏 ) )  | 
						
						
							| 156 | 
							
								
							 | 
							reeanv | 
							⊢ ( ∃ 𝑎  ∈  dom  𝑊 ∃ 𝑏  ∈  dom  𝑊 ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 )  ↔  ( ∃ 𝑎  ∈  dom  𝑊 𝑦  ∈  𝑎  ∧  ∃ 𝑏  ∈  dom  𝑊 𝑤  ∈  𝑏 ) )  | 
						
						
							| 157 | 
							
								155 156
							 | 
							bitr4i | 
							⊢ ( ( 𝑦  ∈  𝑋  ∧  𝑤  ∈  𝑋 )  ↔  ∃ 𝑎  ∈  dom  𝑊 ∃ 𝑏  ∈  dom  𝑊 ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  | 
						
						
							| 158 | 
							
								
							 | 
							vex | 
							⊢ 𝑏  ∈  V  | 
						
						
							| 159 | 
							
								158
							 | 
							eldm | 
							⊢ ( 𝑏  ∈  dom  𝑊  ↔  ∃ 𝑡 𝑏 𝑊 𝑡 )  | 
						
						
							| 160 | 
							
								6 159
							 | 
							anbi12i | 
							⊢ ( ( 𝑎  ∈  dom  𝑊  ∧  𝑏  ∈  dom  𝑊 )  ↔  ( ∃ 𝑠 𝑎 𝑊 𝑠  ∧  ∃ 𝑡 𝑏 𝑊 𝑡 ) )  | 
						
						
							| 161 | 
							
								
							 | 
							exdistrv | 
							⊢ ( ∃ 𝑠 ∃ 𝑡 ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 )  ↔  ( ∃ 𝑠 𝑎 𝑊 𝑠  ∧  ∃ 𝑡 𝑏 𝑊 𝑡 ) )  | 
						
						
							| 162 | 
							
								160 161
							 | 
							bitr4i | 
							⊢ ( ( 𝑎  ∈  dom  𝑊  ∧  𝑏  ∈  dom  𝑊 )  ↔  ∃ 𝑠 ∃ 𝑡 ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  | 
						
						
							| 163 | 
							
								83
							 | 
							simprd | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  →  ( 𝑡  We  𝑏  ∧  ∀ 𝑦  ∈  𝑏 [ ( ◡ 𝑡  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( 𝑡  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) )  | 
						
						
							| 164 | 
							
								163
							 | 
							simpld | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  →  𝑡  We  𝑏 )  | 
						
						
							| 165 | 
							
								164
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑡  We  𝑏 )  | 
						
						
							| 166 | 
							
								
							 | 
							weso | 
							⊢ ( 𝑡  We  𝑏  →  𝑡  Or  𝑏 )  | 
						
						
							| 167 | 
							
								165 166
							 | 
							syl | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑡  Or  𝑏 )  | 
						
						
							| 168 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑎  ⊆  𝑏 )  | 
						
						
							| 169 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑦  ∈  𝑎 )  | 
						
						
							| 170 | 
							
								168 169
							 | 
							sseldd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑦  ∈  𝑏 )  | 
						
						
							| 171 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑤  ∈  𝑏 )  | 
						
						
							| 172 | 
							
								
							 | 
							solin | 
							⊢ ( ( 𝑡  Or  𝑏  ∧  ( 𝑦  ∈  𝑏  ∧  𝑤  ∈  𝑏 ) )  →  ( 𝑦 𝑡 𝑤  ∨  𝑦  =  𝑤  ∨  𝑤 𝑡 𝑦 ) )  | 
						
						
							| 173 | 
							
								167 170 171 172
							 | 
							syl12anc | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  ( 𝑦 𝑡 𝑤  ∨  𝑦  =  𝑤  ∨  𝑤 𝑡 𝑦 ) )  | 
						
						
							| 174 | 
							
								22
							 | 
							relelrni | 
							⊢ ( 𝑏 𝑊 𝑡  →  𝑡  ∈  ran  𝑊 )  | 
						
						
							| 175 | 
							
								174
							 | 
							ad2antll | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  →  𝑡  ∈  ran  𝑊 )  | 
						
						
							| 176 | 
							
								175
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑡  ∈  ran  𝑊 )  | 
						
						
							| 177 | 
							
								
							 | 
							elssuni | 
							⊢ ( 𝑡  ∈  ran  𝑊  →  𝑡  ⊆  ∪  ran  𝑊 )  | 
						
						
							| 178 | 
							
								176 177
							 | 
							syl | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑡  ⊆  ∪  ran  𝑊 )  | 
						
						
							| 179 | 
							
								178
							 | 
							ssbrd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  ( 𝑦 𝑡 𝑤  →  𝑦 ∪  ran  𝑊 𝑤 ) )  | 
						
						
							| 180 | 
							
								
							 | 
							idd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  ( 𝑦  =  𝑤  →  𝑦  =  𝑤 ) )  | 
						
						
							| 181 | 
							
								178
							 | 
							ssbrd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  ( 𝑤 𝑡 𝑦  →  𝑤 ∪  ran  𝑊 𝑦 ) )  | 
						
						
							| 182 | 
							
								179 180 181
							 | 
							3orim123d | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  ( ( 𝑦 𝑡 𝑤  ∨  𝑦  =  𝑤  ∨  𝑤 𝑡 𝑦 )  →  ( 𝑦 ∪  ran  𝑊 𝑤  ∨  𝑦  =  𝑤  ∨  𝑤 ∪  ran  𝑊 𝑦 ) ) )  | 
						
						
							| 183 | 
							
								173 182
							 | 
							mpd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  ( 𝑦 ∪  ran  𝑊 𝑤  ∨  𝑦  =  𝑤  ∨  𝑤 ∪  ran  𝑊 𝑦 ) )  | 
						
						
							| 184 | 
							
								50
							 | 
							adantrr | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  →  𝑠  We  𝑎 )  | 
						
						
							| 185 | 
							
								184
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑠  We  𝑎 )  | 
						
						
							| 186 | 
							
								
							 | 
							weso | 
							⊢ ( 𝑠  We  𝑎  →  𝑠  Or  𝑎 )  | 
						
						
							| 187 | 
							
								185 186
							 | 
							syl | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑠  Or  𝑎 )  | 
						
						
							| 188 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑦  ∈  𝑎 )  | 
						
						
							| 189 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑏  ⊆  𝑎 )  | 
						
						
							| 190 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑤  ∈  𝑏 )  | 
						
						
							| 191 | 
							
								189 190
							 | 
							sseldd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑤  ∈  𝑎 )  | 
						
						
							| 192 | 
							
								
							 | 
							solin | 
							⊢ ( ( 𝑠  Or  𝑎  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑎 ) )  →  ( 𝑦 𝑠 𝑤  ∨  𝑦  =  𝑤  ∨  𝑤 𝑠 𝑦 ) )  | 
						
						
							| 193 | 
							
								187 188 191 192
							 | 
							syl12anc | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  ( 𝑦 𝑠 𝑤  ∨  𝑦  =  𝑤  ∨  𝑤 𝑠 𝑦 ) )  | 
						
						
							| 194 | 
							
								22
							 | 
							relelrni | 
							⊢ ( 𝑎 𝑊 𝑠  →  𝑠  ∈  ran  𝑊 )  | 
						
						
							| 195 | 
							
								194
							 | 
							ad2antrl | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  →  𝑠  ∈  ran  𝑊 )  | 
						
						
							| 196 | 
							
								195
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑠  ∈  ran  𝑊 )  | 
						
						
							| 197 | 
							
								
							 | 
							elssuni | 
							⊢ ( 𝑠  ∈  ran  𝑊  →  𝑠  ⊆  ∪  ran  𝑊 )  | 
						
						
							| 198 | 
							
								196 197
							 | 
							syl | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑠  ⊆  ∪  ran  𝑊 )  | 
						
						
							| 199 | 
							
								198
							 | 
							ssbrd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  ( 𝑦 𝑠 𝑤  →  𝑦 ∪  ran  𝑊 𝑤 ) )  | 
						
						
							| 200 | 
							
								
							 | 
							idd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  ( 𝑦  =  𝑤  →  𝑦  =  𝑤 ) )  | 
						
						
							| 201 | 
							
								198
							 | 
							ssbrd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  ( 𝑤 𝑠 𝑦  →  𝑤 ∪  ran  𝑊 𝑦 ) )  | 
						
						
							| 202 | 
							
								199 200 201
							 | 
							3orim123d | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  ( ( 𝑦 𝑠 𝑤  ∨  𝑦  =  𝑤  ∨  𝑤 𝑠 𝑦 )  →  ( 𝑦 ∪  ran  𝑊 𝑤  ∨  𝑦  =  𝑤  ∨  𝑤 ∪  ran  𝑊 𝑦 ) ) )  | 
						
						
							| 203 | 
							
								193 202
							 | 
							mpd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  ( 𝑦 ∪  ran  𝑊 𝑤  ∨  𝑦  =  𝑤  ∨  𝑤 ∪  ran  𝑊 𝑦 ) )  | 
						
						
							| 204 | 
							
								127
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  →  ( ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) )  ∨  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) ) )  | 
						
						
							| 205 | 
							
								183 203 204
							 | 
							mpjaodan | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 ) )  →  ( 𝑦 ∪  ran  𝑊 𝑤  ∨  𝑦  =  𝑤  ∨  𝑤 ∪  ran  𝑊 𝑦 ) )  | 
						
						
							| 206 | 
							
								205
							 | 
							exp31 | 
							⊢ ( 𝜑  →  ( ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 )  →  ( ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 )  →  ( 𝑦 ∪  ran  𝑊 𝑤  ∨  𝑦  =  𝑤  ∨  𝑤 ∪  ran  𝑊 𝑦 ) ) ) )  | 
						
						
							| 207 | 
							
								206
							 | 
							exlimdvv | 
							⊢ ( 𝜑  →  ( ∃ 𝑠 ∃ 𝑡 ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 )  →  ( ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 )  →  ( 𝑦 ∪  ran  𝑊 𝑤  ∨  𝑦  =  𝑤  ∨  𝑤 ∪  ran  𝑊 𝑦 ) ) ) )  | 
						
						
							| 208 | 
							
								162 207
							 | 
							biimtrid | 
							⊢ ( 𝜑  →  ( ( 𝑎  ∈  dom  𝑊  ∧  𝑏  ∈  dom  𝑊 )  →  ( ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 )  →  ( 𝑦 ∪  ran  𝑊 𝑤  ∨  𝑦  =  𝑤  ∨  𝑤 ∪  ran  𝑊 𝑦 ) ) ) )  | 
						
						
							| 209 | 
							
								208
							 | 
							rexlimdvv | 
							⊢ ( 𝜑  →  ( ∃ 𝑎  ∈  dom  𝑊 ∃ 𝑏  ∈  dom  𝑊 ( 𝑦  ∈  𝑎  ∧  𝑤  ∈  𝑏 )  →  ( 𝑦 ∪  ran  𝑊 𝑤  ∨  𝑦  =  𝑤  ∨  𝑤 ∪  ran  𝑊 𝑦 ) ) )  | 
						
						
							| 210 | 
							
								157 209
							 | 
							biimtrid | 
							⊢ ( 𝜑  →  ( ( 𝑦  ∈  𝑋  ∧  𝑤  ∈  𝑋 )  →  ( 𝑦 ∪  ran  𝑊 𝑤  ∨  𝑦  =  𝑤  ∨  𝑤 ∪  ran  𝑊 𝑦 ) ) )  | 
						
						
							| 211 | 
							
								210
							 | 
							ralrimivv | 
							⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑋 ∀ 𝑤  ∈  𝑋 ( 𝑦 ∪  ran  𝑊 𝑤  ∨  𝑦  =  𝑤  ∨  𝑤 ∪  ran  𝑊 𝑦 ) )  | 
						
						
							| 212 | 
							
								
							 | 
							dfwe2 | 
							⊢ ( ∪  ran  𝑊  We  𝑋  ↔  ( ∪  ran  𝑊  Fr  𝑋  ∧  ∀ 𝑦  ∈  𝑋 ∀ 𝑤  ∈  𝑋 ( 𝑦 ∪  ran  𝑊 𝑤  ∨  𝑦  =  𝑤  ∨  𝑤 ∪  ran  𝑊 𝑦 ) ) )  | 
						
						
							| 213 | 
							
								151 211 212
							 | 
							sylanbrc | 
							⊢ ( 𝜑  →  ∪  ran  𝑊  We  𝑋 )  | 
						
						
							| 214 | 
							
								1
							 | 
							fpwwe2cbv | 
							⊢ 𝑊  =  { 〈 𝑧 ,  𝑡 〉  ∣  ( ( 𝑧  ⊆  𝐴  ∧  𝑡  ⊆  ( 𝑧  ×  𝑧 ) )  ∧  ( 𝑡  We  𝑧  ∧  ∀ 𝑤  ∈  𝑧 [ ( ◡ 𝑡  “  { 𝑤 } )  /  𝑏 ] ( 𝑏 𝐹 ( 𝑡  ∩  ( 𝑏  ×  𝑏 ) ) )  =  𝑤 ) ) }  | 
						
						
							| 215 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑎 𝑊 𝑠 )  →  𝐴  ∈  𝑉 )  | 
						
						
							| 216 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑎 𝑊 𝑠 )  →  𝑎 𝑊 𝑠 )  | 
						
						
							| 217 | 
							
								214 215 216
							 | 
							fpwwe2lem3 | 
							⊢ ( ( ( 𝜑  ∧  𝑎 𝑊 𝑠 )  ∧  𝑦  ∈  𝑎 )  →  ( ( ◡ 𝑠  “  { 𝑦 } ) 𝐹 ( 𝑠  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) ) )  =  𝑦 )  | 
						
						
							| 218 | 
							
								217
							 | 
							anasss | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ( ( ◡ 𝑠  “  { 𝑦 } ) 𝐹 ( 𝑠  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) ) )  =  𝑦 )  | 
						
						
							| 219 | 
							
								
							 | 
							cnvimass | 
							⊢ ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  ⊆  dom  ∪  ran  𝑊  | 
						
						
							| 220 | 
							
								2 18
							 | 
							ssexd | 
							⊢ ( 𝜑  →  𝑋  ∈  V )  | 
						
						
							| 221 | 
							
								220 220
							 | 
							xpexd | 
							⊢ ( 𝜑  →  ( 𝑋  ×  𝑋 )  ∈  V )  | 
						
						
							| 222 | 
							
								221 38
							 | 
							ssexd | 
							⊢ ( 𝜑  →  ∪  ran  𝑊  ∈  V )  | 
						
						
							| 223 | 
							
								222
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ∪  ran  𝑊  ∈  V )  | 
						
						
							| 224 | 
							
								223
							 | 
							dmexd | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  dom  ∪  ran  𝑊  ∈  V )  | 
						
						
							| 225 | 
							
								
							 | 
							ssexg | 
							⊢ ( ( ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  ⊆  dom  ∪  ran  𝑊  ∧  dom  ∪  ran  𝑊  ∈  V )  →  ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  ∈  V )  | 
						
						
							| 226 | 
							
								219 224 225
							 | 
							sylancr | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  ∈  V )  | 
						
						
							| 227 | 
							
								
							 | 
							id | 
							⊢ ( 𝑢  =  ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  →  𝑢  =  ( ◡ ∪  ran  𝑊  “  { 𝑦 } ) )  | 
						
						
							| 228 | 
							
								
							 | 
							olc | 
							⊢ ( 𝑤  =  𝑦  →  ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 ) )  | 
						
						
							| 229 | 
							
								
							 | 
							df-br | 
							⊢ ( 𝑧 ∪  ran  𝑊 𝑤  ↔  〈 𝑧 ,  𝑤 〉  ∈  ∪  ran  𝑊 )  | 
						
						
							| 230 | 
							
								
							 | 
							eluni2 | 
							⊢ ( 〈 𝑧 ,  𝑤 〉  ∈  ∪  ran  𝑊  ↔  ∃ 𝑡  ∈  ran  𝑊 〈 𝑧 ,  𝑤 〉  ∈  𝑡 )  | 
						
						
							| 231 | 
							
								229 230
							 | 
							bitri | 
							⊢ ( 𝑧 ∪  ran  𝑊 𝑤  ↔  ∃ 𝑡  ∈  ran  𝑊 〈 𝑧 ,  𝑤 〉  ∈  𝑡 )  | 
						
						
							| 232 | 
							
								
							 | 
							df-br | 
							⊢ ( 𝑧 𝑡 𝑤  ↔  〈 𝑧 ,  𝑤 〉  ∈  𝑡 )  | 
						
						
							| 233 | 
							
								85
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑡  ⊆  ( 𝑏  ×  𝑏 ) )  | 
						
						
							| 234 | 
							
								233
							 | 
							ssbrd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  ( 𝑧 𝑡 𝑤  →  𝑧 ( 𝑏  ×  𝑏 ) 𝑤 ) )  | 
						
						
							| 235 | 
							
								
							 | 
							brxp | 
							⊢ ( 𝑧 ( 𝑏  ×  𝑏 ) 𝑤  ↔  ( 𝑧  ∈  𝑏  ∧  𝑤  ∈  𝑏 ) )  | 
						
						
							| 236 | 
							
								235
							 | 
							simplbi | 
							⊢ ( 𝑧 ( 𝑏  ×  𝑏 ) 𝑤  →  𝑧  ∈  𝑏 )  | 
						
						
							| 237 | 
							
								234 236
							 | 
							syl6 | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  ( 𝑧 𝑡 𝑤  →  𝑧  ∈  𝑏 ) )  | 
						
						
							| 238 | 
							
								21
							 | 
							adantrr | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  →  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  | 
						
						
							| 239 | 
							
								238
							 | 
							ssbrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  →  ( 𝑤 𝑠 𝑦  →  𝑤 ( 𝑎  ×  𝑎 ) 𝑦 ) )  | 
						
						
							| 240 | 
							
								239
							 | 
							imp | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  𝑤 𝑠 𝑦 )  →  𝑤 ( 𝑎  ×  𝑎 ) 𝑦 )  | 
						
						
							| 241 | 
							
								
							 | 
							brxp | 
							⊢ ( 𝑤 ( 𝑎  ×  𝑎 ) 𝑦  ↔  ( 𝑤  ∈  𝑎  ∧  𝑦  ∈  𝑎 ) )  | 
						
						
							| 242 | 
							
								241
							 | 
							simplbi | 
							⊢ ( 𝑤 ( 𝑎  ×  𝑎 ) 𝑦  →  𝑤  ∈  𝑎 )  | 
						
						
							| 243 | 
							
								240 242
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  𝑤 𝑠 𝑦 )  →  𝑤  ∈  𝑎 )  | 
						
						
							| 244 | 
							
								243
							 | 
							a1d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  𝑤 𝑠 𝑦 )  →  ( 𝑦  ∈  𝑎  →  𝑤  ∈  𝑎 ) )  | 
						
						
							| 245 | 
							
								
							 | 
							elequ1 | 
							⊢ ( 𝑤  =  𝑦  →  ( 𝑤  ∈  𝑎  ↔  𝑦  ∈  𝑎 ) )  | 
						
						
							| 246 | 
							
								245
							 | 
							biimprd | 
							⊢ ( 𝑤  =  𝑦  →  ( 𝑦  ∈  𝑎  →  𝑤  ∈  𝑎 ) )  | 
						
						
							| 247 | 
							
								246
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  𝑤  =  𝑦 )  →  ( 𝑦  ∈  𝑎  →  𝑤  ∈  𝑎 ) )  | 
						
						
							| 248 | 
							
								244 247
							 | 
							jaodan | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 ) )  →  ( 𝑦  ∈  𝑎  →  𝑤  ∈  𝑎 ) )  | 
						
						
							| 249 | 
							
								248
							 | 
							impr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  ∧  𝑦  ∈  𝑎 ) )  →  𝑤  ∈  𝑎 )  | 
						
						
							| 250 | 
							
								249
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑤  ∈  𝑎 )  | 
						
						
							| 251 | 
							
								237 250
							 | 
							jctird | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  ( 𝑧 𝑡 𝑤  →  ( 𝑧  ∈  𝑏  ∧  𝑤  ∈  𝑎 ) ) )  | 
						
						
							| 252 | 
							
								
							 | 
							brxp | 
							⊢ ( 𝑧 ( 𝑏  ×  𝑎 ) 𝑤  ↔  ( 𝑧  ∈  𝑏  ∧  𝑤  ∈  𝑎 ) )  | 
						
						
							| 253 | 
							
								251 252
							 | 
							imbitrrdi | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  ( 𝑧 𝑡 𝑤  →  𝑧 ( 𝑏  ×  𝑎 ) 𝑤 ) )  | 
						
						
							| 254 | 
							
								253
							 | 
							ancld | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  ( 𝑧 𝑡 𝑤  →  ( 𝑧 𝑡 𝑤  ∧  𝑧 ( 𝑏  ×  𝑎 ) 𝑤 ) ) )  | 
						
						
							| 255 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) )  | 
						
						
							| 256 | 
							
								255
							 | 
							breqd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  ( 𝑧 𝑠 𝑤  ↔  𝑧 ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) 𝑤 ) )  | 
						
						
							| 257 | 
							
								
							 | 
							brin | 
							⊢ ( 𝑧 ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) 𝑤  ↔  ( 𝑧 𝑡 𝑤  ∧  𝑧 ( 𝑏  ×  𝑎 ) 𝑤 ) )  | 
						
						
							| 258 | 
							
								256 257
							 | 
							bitrdi | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  ( 𝑧 𝑠 𝑤  ↔  ( 𝑧 𝑡 𝑤  ∧  𝑧 ( 𝑏  ×  𝑎 ) 𝑤 ) ) )  | 
						
						
							| 259 | 
							
								254 258
							 | 
							sylibrd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) ) )  →  ( 𝑧 𝑡 𝑤  →  𝑧 𝑠 𝑤 ) )  | 
						
						
							| 260 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) )  | 
						
						
							| 261 | 
							
								260 119
							 | 
							eqsstrdi | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  𝑡  ⊆  𝑠 )  | 
						
						
							| 262 | 
							
								261
							 | 
							ssbrd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) )  →  ( 𝑧 𝑡 𝑤  →  𝑧 𝑠 𝑤 ) )  | 
						
						
							| 263 | 
							
								127
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  ∧  𝑦  ∈  𝑎 ) )  →  ( ( 𝑎  ⊆  𝑏  ∧  𝑠  =  ( 𝑡  ∩  ( 𝑏  ×  𝑎 ) ) )  ∨  ( 𝑏  ⊆  𝑎  ∧  𝑡  =  ( 𝑠  ∩  ( 𝑎  ×  𝑏 ) ) ) ) )  | 
						
						
							| 264 | 
							
								259 262 263
							 | 
							mpjaodan | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  ∧  𝑦  ∈  𝑎 ) )  →  ( 𝑧 𝑡 𝑤  →  𝑧 𝑠 𝑤 ) )  | 
						
						
							| 265 | 
							
								232 264
							 | 
							biimtrrid | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  ∧  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  ∧  𝑦  ∈  𝑎 ) )  →  ( 〈 𝑧 ,  𝑤 〉  ∈  𝑡  →  𝑧 𝑠 𝑤 ) )  | 
						
						
							| 266 | 
							
								265
							 | 
							exp32 | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑏 𝑊 𝑡 ) )  →  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  →  ( 𝑦  ∈  𝑎  →  ( 〈 𝑧 ,  𝑤 〉  ∈  𝑡  →  𝑧 𝑠 𝑤 ) ) ) )  | 
						
						
							| 267 | 
							
								266
							 | 
							expr | 
							⊢ ( ( 𝜑  ∧  𝑎 𝑊 𝑠 )  →  ( 𝑏 𝑊 𝑡  →  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  →  ( 𝑦  ∈  𝑎  →  ( 〈 𝑧 ,  𝑤 〉  ∈  𝑡  →  𝑧 𝑠 𝑤 ) ) ) ) )  | 
						
						
							| 268 | 
							
								267
							 | 
							com24 | 
							⊢ ( ( 𝜑  ∧  𝑎 𝑊 𝑠 )  →  ( 𝑦  ∈  𝑎  →  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  →  ( 𝑏 𝑊 𝑡  →  ( 〈 𝑧 ,  𝑤 〉  ∈  𝑡  →  𝑧 𝑠 𝑤 ) ) ) ) )  | 
						
						
							| 269 | 
							
								268
							 | 
							impr | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ( ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 )  →  ( 𝑏 𝑊 𝑡  →  ( 〈 𝑧 ,  𝑤 〉  ∈  𝑡  →  𝑧 𝑠 𝑤 ) ) ) )  | 
						
						
							| 270 | 
							
								269
							 | 
							imp | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 ) )  →  ( 𝑏 𝑊 𝑡  →  ( 〈 𝑧 ,  𝑤 〉  ∈  𝑡  →  𝑧 𝑠 𝑤 ) ) )  | 
						
						
							| 271 | 
							
								270
							 | 
							exlimdv | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 ) )  →  ( ∃ 𝑏 𝑏 𝑊 𝑡  →  ( 〈 𝑧 ,  𝑤 〉  ∈  𝑡  →  𝑧 𝑠 𝑤 ) ) )  | 
						
						
							| 272 | 
							
								71 271
							 | 
							biimtrid | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 ) )  →  ( 𝑡  ∈  ran  𝑊  →  ( 〈 𝑧 ,  𝑤 〉  ∈  𝑡  →  𝑧 𝑠 𝑤 ) ) )  | 
						
						
							| 273 | 
							
								272
							 | 
							rexlimdv | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 ) )  →  ( ∃ 𝑡  ∈  ran  𝑊 〈 𝑧 ,  𝑤 〉  ∈  𝑡  →  𝑧 𝑠 𝑤 ) )  | 
						
						
							| 274 | 
							
								231 273
							 | 
							biimtrid | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 ) )  →  ( 𝑧 ∪  ran  𝑊 𝑤  →  𝑧 𝑠 𝑤 ) )  | 
						
						
							| 275 | 
							
								228 274
							 | 
							sylan2 | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  𝑤  =  𝑦 )  →  ( 𝑧 ∪  ran  𝑊 𝑤  →  𝑧 𝑠 𝑤 ) )  | 
						
						
							| 276 | 
							
								275
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ( 𝑤  =  𝑦  →  ( 𝑧 ∪  ran  𝑊 𝑤  →  𝑧 𝑠 𝑤 ) ) )  | 
						
						
							| 277 | 
							
								276
							 | 
							alrimiv | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ∀ 𝑤 ( 𝑤  =  𝑦  →  ( 𝑧 ∪  ran  𝑊 𝑤  →  𝑧 𝑠 𝑤 ) ) )  | 
						
						
							| 278 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑤  =  𝑦  →  ( 𝑧 ∪  ran  𝑊 𝑤  ↔  𝑧 ∪  ran  𝑊 𝑦 ) )  | 
						
						
							| 279 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑤  =  𝑦  →  ( 𝑧 𝑠 𝑤  ↔  𝑧 𝑠 𝑦 ) )  | 
						
						
							| 280 | 
							
								278 279
							 | 
							imbi12d | 
							⊢ ( 𝑤  =  𝑦  →  ( ( 𝑧 ∪  ran  𝑊 𝑤  →  𝑧 𝑠 𝑤 )  ↔  ( 𝑧 ∪  ran  𝑊 𝑦  →  𝑧 𝑠 𝑦 ) ) )  | 
						
						
							| 281 | 
							
								280
							 | 
							equsalvw | 
							⊢ ( ∀ 𝑤 ( 𝑤  =  𝑦  →  ( 𝑧 ∪  ran  𝑊 𝑤  →  𝑧 𝑠 𝑤 ) )  ↔  ( 𝑧 ∪  ran  𝑊 𝑦  →  𝑧 𝑠 𝑦 ) )  | 
						
						
							| 282 | 
							
								277 281
							 | 
							sylib | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ( 𝑧 ∪  ran  𝑊 𝑦  →  𝑧 𝑠 𝑦 ) )  | 
						
						
							| 283 | 
							
								194
							 | 
							ad2antrl | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  𝑠  ∈  ran  𝑊 )  | 
						
						
							| 284 | 
							
								283 197
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  𝑠  ⊆  ∪  ran  𝑊 )  | 
						
						
							| 285 | 
							
								284
							 | 
							ssbrd | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ( 𝑧 𝑠 𝑦  →  𝑧 ∪  ran  𝑊 𝑦 ) )  | 
						
						
							| 286 | 
							
								282 285
							 | 
							impbid | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ( 𝑧 ∪  ran  𝑊 𝑦  ↔  𝑧 𝑠 𝑦 ) )  | 
						
						
							| 287 | 
							
								
							 | 
							vex | 
							⊢ 𝑧  ∈  V  | 
						
						
							| 288 | 
							
								287
							 | 
							eliniseg | 
							⊢ ( 𝑦  ∈  V  →  ( 𝑧  ∈  ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  ↔  𝑧 ∪  ran  𝑊 𝑦 ) )  | 
						
						
							| 289 | 
							
								288
							 | 
							elv | 
							⊢ ( 𝑧  ∈  ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  ↔  𝑧 ∪  ran  𝑊 𝑦 )  | 
						
						
							| 290 | 
							
								287
							 | 
							eliniseg | 
							⊢ ( 𝑦  ∈  V  →  ( 𝑧  ∈  ( ◡ 𝑠  “  { 𝑦 } )  ↔  𝑧 𝑠 𝑦 ) )  | 
						
						
							| 291 | 
							
								290
							 | 
							elv | 
							⊢ ( 𝑧  ∈  ( ◡ 𝑠  “  { 𝑦 } )  ↔  𝑧 𝑠 𝑦 )  | 
						
						
							| 292 | 
							
								286 289 291
							 | 
							3bitr4g | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ( 𝑧  ∈  ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  ↔  𝑧  ∈  ( ◡ 𝑠  “  { 𝑦 } ) ) )  | 
						
						
							| 293 | 
							
								292
							 | 
							eqrdv | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  =  ( ◡ 𝑠  “  { 𝑦 } ) )  | 
						
						
							| 294 | 
							
								227 293
							 | 
							sylan9eqr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  𝑢  =  ( ◡ ∪  ran  𝑊  “  { 𝑦 } ) )  →  𝑢  =  ( ◡ 𝑠  “  { 𝑦 } ) )  | 
						
						
							| 295 | 
							
								294
							 | 
							sqxpeqd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  𝑢  =  ( ◡ ∪  ran  𝑊  “  { 𝑦 } ) )  →  ( 𝑢  ×  𝑢 )  =  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) )  | 
						
						
							| 296 | 
							
								295
							 | 
							ineq2d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  𝑢  =  ( ◡ ∪  ran  𝑊  “  { 𝑦 } ) )  →  ( ∪  ran  𝑊  ∩  ( 𝑢  ×  𝑢 ) )  =  ( ∪  ran  𝑊  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) ) )  | 
						
						
							| 297 | 
							
								
							 | 
							relinxp | 
							⊢ Rel  ( ∪  ran  𝑊  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) )  | 
						
						
							| 298 | 
							
								
							 | 
							relinxp | 
							⊢ Rel  ( 𝑠  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) )  | 
						
						
							| 299 | 
							
								
							 | 
							vex | 
							⊢ 𝑤  ∈  V  | 
						
						
							| 300 | 
							
								299
							 | 
							eliniseg | 
							⊢ ( 𝑦  ∈  V  →  ( 𝑤  ∈  ( ◡ 𝑠  “  { 𝑦 } )  ↔  𝑤 𝑠 𝑦 ) )  | 
						
						
							| 301 | 
							
								290 300
							 | 
							anbi12d | 
							⊢ ( 𝑦  ∈  V  →  ( ( 𝑧  ∈  ( ◡ 𝑠  “  { 𝑦 } )  ∧  𝑤  ∈  ( ◡ 𝑠  “  { 𝑦 } ) )  ↔  ( 𝑧 𝑠 𝑦  ∧  𝑤 𝑠 𝑦 ) ) )  | 
						
						
							| 302 | 
							
								301
							 | 
							elv | 
							⊢ ( ( 𝑧  ∈  ( ◡ 𝑠  “  { 𝑦 } )  ∧  𝑤  ∈  ( ◡ 𝑠  “  { 𝑦 } ) )  ↔  ( 𝑧 𝑠 𝑦  ∧  𝑤 𝑠 𝑦 ) )  | 
						
						
							| 303 | 
							
								
							 | 
							orc | 
							⊢ ( 𝑤 𝑠 𝑦  →  ( 𝑤 𝑠 𝑦  ∨  𝑤  =  𝑦 ) )  | 
						
						
							| 304 | 
							
								303 274
							 | 
							sylan2 | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  𝑤 𝑠 𝑦 )  →  ( 𝑧 ∪  ran  𝑊 𝑤  →  𝑧 𝑠 𝑤 ) )  | 
						
						
							| 305 | 
							
								304
							 | 
							adantrl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑧 𝑠 𝑦  ∧  𝑤 𝑠 𝑦 ) )  →  ( 𝑧 ∪  ran  𝑊 𝑤  →  𝑧 𝑠 𝑤 ) )  | 
						
						
							| 306 | 
							
								284
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑧 𝑠 𝑦  ∧  𝑤 𝑠 𝑦 ) )  →  𝑠  ⊆  ∪  ran  𝑊 )  | 
						
						
							| 307 | 
							
								306
							 | 
							ssbrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑧 𝑠 𝑦  ∧  𝑤 𝑠 𝑦 ) )  →  ( 𝑧 𝑠 𝑤  →  𝑧 ∪  ran  𝑊 𝑤 ) )  | 
						
						
							| 308 | 
							
								305 307
							 | 
							impbid | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑧 𝑠 𝑦  ∧  𝑤 𝑠 𝑦 ) )  →  ( 𝑧 ∪  ran  𝑊 𝑤  ↔  𝑧 𝑠 𝑤 ) )  | 
						
						
							| 309 | 
							
								302 308
							 | 
							sylan2b | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  ( 𝑧  ∈  ( ◡ 𝑠  “  { 𝑦 } )  ∧  𝑤  ∈  ( ◡ 𝑠  “  { 𝑦 } ) ) )  →  ( 𝑧 ∪  ran  𝑊 𝑤  ↔  𝑧 𝑠 𝑤 ) )  | 
						
						
							| 310 | 
							
								309
							 | 
							pm5.32da | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ( ( ( 𝑧  ∈  ( ◡ 𝑠  “  { 𝑦 } )  ∧  𝑤  ∈  ( ◡ 𝑠  “  { 𝑦 } ) )  ∧  𝑧 ∪  ran  𝑊 𝑤 )  ↔  ( ( 𝑧  ∈  ( ◡ 𝑠  “  { 𝑦 } )  ∧  𝑤  ∈  ( ◡ 𝑠  “  { 𝑦 } ) )  ∧  𝑧 𝑠 𝑤 ) ) )  | 
						
						
							| 311 | 
							
								
							 | 
							df-br | 
							⊢ ( 𝑧 ( ∪  ran  𝑊  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) ) 𝑤  ↔  〈 𝑧 ,  𝑤 〉  ∈  ( ∪  ran  𝑊  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) ) )  | 
						
						
							| 312 | 
							
								
							 | 
							brinxp2 | 
							⊢ ( 𝑧 ( ∪  ran  𝑊  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) ) 𝑤  ↔  ( ( 𝑧  ∈  ( ◡ 𝑠  “  { 𝑦 } )  ∧  𝑤  ∈  ( ◡ 𝑠  “  { 𝑦 } ) )  ∧  𝑧 ∪  ran  𝑊 𝑤 ) )  | 
						
						
							| 313 | 
							
								311 312
							 | 
							bitr3i | 
							⊢ ( 〈 𝑧 ,  𝑤 〉  ∈  ( ∪  ran  𝑊  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) )  ↔  ( ( 𝑧  ∈  ( ◡ 𝑠  “  { 𝑦 } )  ∧  𝑤  ∈  ( ◡ 𝑠  “  { 𝑦 } ) )  ∧  𝑧 ∪  ran  𝑊 𝑤 ) )  | 
						
						
							| 314 | 
							
								
							 | 
							df-br | 
							⊢ ( 𝑧 ( 𝑠  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) ) 𝑤  ↔  〈 𝑧 ,  𝑤 〉  ∈  ( 𝑠  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) ) )  | 
						
						
							| 315 | 
							
								
							 | 
							brinxp2 | 
							⊢ ( 𝑧 ( 𝑠  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) ) 𝑤  ↔  ( ( 𝑧  ∈  ( ◡ 𝑠  “  { 𝑦 } )  ∧  𝑤  ∈  ( ◡ 𝑠  “  { 𝑦 } ) )  ∧  𝑧 𝑠 𝑤 ) )  | 
						
						
							| 316 | 
							
								314 315
							 | 
							bitr3i | 
							⊢ ( 〈 𝑧 ,  𝑤 〉  ∈  ( 𝑠  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) )  ↔  ( ( 𝑧  ∈  ( ◡ 𝑠  “  { 𝑦 } )  ∧  𝑤  ∈  ( ◡ 𝑠  “  { 𝑦 } ) )  ∧  𝑧 𝑠 𝑤 ) )  | 
						
						
							| 317 | 
							
								310 313 316
							 | 
							3bitr4g | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ( 〈 𝑧 ,  𝑤 〉  ∈  ( ∪  ran  𝑊  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) )  ↔  〈 𝑧 ,  𝑤 〉  ∈  ( 𝑠  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) ) ) )  | 
						
						
							| 318 | 
							
								297 298 317
							 | 
							eqrelrdv | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ( ∪  ran  𝑊  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) )  =  ( 𝑠  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) ) )  | 
						
						
							| 319 | 
							
								318
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  𝑢  =  ( ◡ ∪  ran  𝑊  “  { 𝑦 } ) )  →  ( ∪  ran  𝑊  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) )  =  ( 𝑠  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) ) )  | 
						
						
							| 320 | 
							
								296 319
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  𝑢  =  ( ◡ ∪  ran  𝑊  “  { 𝑦 } ) )  →  ( ∪  ran  𝑊  ∩  ( 𝑢  ×  𝑢 ) )  =  ( 𝑠  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) ) )  | 
						
						
							| 321 | 
							
								294 320
							 | 
							oveq12d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  𝑢  =  ( ◡ ∪  ran  𝑊  “  { 𝑦 } ) )  →  ( 𝑢 𝐹 ( ∪  ran  𝑊  ∩  ( 𝑢  ×  𝑢 ) ) )  =  ( ( ◡ 𝑠  “  { 𝑦 } ) 𝐹 ( 𝑠  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) ) ) )  | 
						
						
							| 322 | 
							
								321
							 | 
							eqeq1d | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  ∧  𝑢  =  ( ◡ ∪  ran  𝑊  “  { 𝑦 } ) )  →  ( ( 𝑢 𝐹 ( ∪  ran  𝑊  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦  ↔  ( ( ◡ 𝑠  “  { 𝑦 } ) 𝐹 ( 𝑠  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) ) )  =  𝑦 ) )  | 
						
						
							| 323 | 
							
								226 322
							 | 
							sbcied | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  ( [ ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ∪  ran  𝑊  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦  ↔  ( ( ◡ 𝑠  “  { 𝑦 } ) 𝐹 ( 𝑠  ∩  ( ( ◡ 𝑠  “  { 𝑦 } )  ×  ( ◡ 𝑠  “  { 𝑦 } ) ) ) )  =  𝑦 ) )  | 
						
						
							| 324 | 
							
								218 323
							 | 
							mpbird | 
							⊢ ( ( 𝜑  ∧  ( 𝑎 𝑊 𝑠  ∧  𝑦  ∈  𝑎 ) )  →  [ ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ∪  ran  𝑊  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 )  | 
						
						
							| 325 | 
							
								324
							 | 
							exp32 | 
							⊢ ( 𝜑  →  ( 𝑎 𝑊 𝑠  →  ( 𝑦  ∈  𝑎  →  [ ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ∪  ran  𝑊  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) )  | 
						
						
							| 326 | 
							
								325
							 | 
							exlimdv | 
							⊢ ( 𝜑  →  ( ∃ 𝑠 𝑎 𝑊 𝑠  →  ( 𝑦  ∈  𝑎  →  [ ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ∪  ran  𝑊  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) )  | 
						
						
							| 327 | 
							
								6 326
							 | 
							biimtrid | 
							⊢ ( 𝜑  →  ( 𝑎  ∈  dom  𝑊  →  ( 𝑦  ∈  𝑎  →  [ ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ∪  ran  𝑊  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) )  | 
						
						
							| 328 | 
							
								327
							 | 
							rexlimdv | 
							⊢ ( 𝜑  →  ( ∃ 𝑎  ∈  dom  𝑊 𝑦  ∈  𝑎  →  [ ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ∪  ran  𝑊  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) )  | 
						
						
							| 329 | 
							
								45 328
							 | 
							biimtrid | 
							⊢ ( 𝜑  →  ( 𝑦  ∈  𝑋  →  [ ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ∪  ran  𝑊  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) )  | 
						
						
							| 330 | 
							
								329
							 | 
							ralrimiv | 
							⊢ ( 𝜑  →  ∀ 𝑦  ∈  𝑋 [ ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ∪  ran  𝑊  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 )  | 
						
						
							| 331 | 
							
								213 330
							 | 
							jca | 
							⊢ ( 𝜑  →  ( ∪  ran  𝑊  We  𝑋  ∧  ∀ 𝑦  ∈  𝑋 [ ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ∪  ran  𝑊  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) )  | 
						
						
							| 332 | 
							
								1 2
							 | 
							fpwwe2lem2 | 
							⊢ ( 𝜑  →  ( 𝑋 𝑊 ∪  ran  𝑊  ↔  ( ( 𝑋  ⊆  𝐴  ∧  ∪  ran  𝑊  ⊆  ( 𝑋  ×  𝑋 ) )  ∧  ( ∪  ran  𝑊  We  𝑋  ∧  ∀ 𝑦  ∈  𝑋 [ ( ◡ ∪  ran  𝑊  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ∪  ran  𝑊  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) ) )  | 
						
						
							| 333 | 
							
								39 331 332
							 | 
							mpbir2and | 
							⊢ ( 𝜑  →  𝑋 𝑊 ∪  ran  𝑊 )  | 
						
						
							| 334 | 
							
								22
							 | 
							releldmi | 
							⊢ ( 𝑋 𝑊 ∪  ran  𝑊  →  𝑋  ∈  dom  𝑊 )  | 
						
						
							| 335 | 
							
								333 334
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑋  ∈  dom  𝑊 )  |