| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fpwwe2.1 | 
							⊢ 𝑊  =  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 ) )  ∧  ( 𝑟  We  𝑥  ∧  ∀ 𝑦  ∈  𝑥 [ ( ◡ 𝑟  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( 𝑟  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) }  | 
						
						
							| 2 | 
							
								
							 | 
							fpwwe2.2 | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑉 )  | 
						
						
							| 3 | 
							
								
							 | 
							fpwwe2.3 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  →  ( 𝑥 𝐹 𝑟 )  ∈  𝐴 )  | 
						
						
							| 4 | 
							
								
							 | 
							fpwwe2.4 | 
							⊢ 𝑋  =  ∪  dom  𝑊  | 
						
						
							| 5 | 
							
								
							 | 
							ssun2 | 
							⊢ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  | 
						
						
							| 6 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  𝐴  ∈  𝑉 )  | 
						
						
							| 7 | 
							
								3
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  →  ( 𝑥 𝐹 𝑟 )  ∈  𝐴 )  | 
						
						
							| 8 | 
							
								1 6 7 4
							 | 
							fpwwe2lem11 | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  𝑋  ∈  dom  𝑊 )  | 
						
						
							| 9 | 
							
								1 6 7 4
							 | 
							fpwwe2lem10 | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  𝑊 : dom  𝑊 ⟶ 𝒫  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							ffun | 
							⊢ ( 𝑊 : dom  𝑊 ⟶ 𝒫  ( 𝑋  ×  𝑋 )  →  Fun  𝑊 )  | 
						
						
							| 11 | 
							
								
							 | 
							funfvbrb | 
							⊢ ( Fun  𝑊  →  ( 𝑋  ∈  dom  𝑊  ↔  𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							3syl | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( 𝑋  ∈  dom  𝑊  ↔  𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) )  | 
						
						
							| 13 | 
							
								8 12
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) )  | 
						
						
							| 14 | 
							
								1 6
							 | 
							fpwwe2lem2 | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( 𝑋 𝑊 ( 𝑊 ‘ 𝑋 )  ↔  ( ( 𝑋  ⊆  𝐴  ∧  ( 𝑊 ‘ 𝑋 )  ⊆  ( 𝑋  ×  𝑋 ) )  ∧  ( ( 𝑊 ‘ 𝑋 )  We  𝑋  ∧  ∀ 𝑦  ∈  𝑋 [ ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝑋 )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							mpbid | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( ( 𝑋  ⊆  𝐴  ∧  ( 𝑊 ‘ 𝑋 )  ⊆  ( 𝑋  ×  𝑋 ) )  ∧  ( ( 𝑊 ‘ 𝑋 )  We  𝑋  ∧  ∀ 𝑦  ∈  𝑋 [ ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝑋 )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							simpld | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( 𝑋  ⊆  𝐴  ∧  ( 𝑊 ‘ 𝑋 )  ⊆  ( 𝑋  ×  𝑋 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							simpld | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  𝑋  ⊆  𝐴 )  | 
						
						
							| 18 | 
							
								16
							 | 
							simprd | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( 𝑊 ‘ 𝑋 )  ⊆  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 19 | 
							
								15
							 | 
							simprd | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( ( 𝑊 ‘ 𝑋 )  We  𝑋  ∧  ∀ 𝑦  ∈  𝑋 [ ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝑋 )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							simpld | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( 𝑊 ‘ 𝑋 )  We  𝑋 )  | 
						
						
							| 21 | 
							
								17 18 20
							 | 
							3jca | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( 𝑋  ⊆  𝐴  ∧  ( 𝑊 ‘ 𝑋 )  ⊆  ( 𝑋  ×  𝑋 )  ∧  ( 𝑊 ‘ 𝑋 )  We  𝑋 ) )  | 
						
						
							| 22 | 
							
								1 2 3
							 | 
							fpwwe2lem4 | 
							⊢ ( ( 𝜑  ∧  ( 𝑋  ⊆  𝐴  ∧  ( 𝑊 ‘ 𝑋 )  ⊆  ( 𝑋  ×  𝑋 )  ∧  ( 𝑊 ‘ 𝑋 )  We  𝑋 ) )  →  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝐴 )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							syldan | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝐴 )  | 
						
						
							| 24 | 
							
								23
							 | 
							snssd | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ⊆  𝐴 )  | 
						
						
							| 25 | 
							
								17 24
							 | 
							unssd | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ⊆  𝐴 )  | 
						
						
							| 26 | 
							
								
							 | 
							ssun1 | 
							⊢ 𝑋  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  | 
						
						
							| 27 | 
							
								
							 | 
							xpss12 | 
							⊢ ( ( 𝑋  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑋  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( 𝑋  ×  𝑋 )  ⊆  ( ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ×  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) )  | 
						
						
							| 28 | 
							
								26 26 27
							 | 
							mp2an | 
							⊢ ( 𝑋  ×  𝑋 )  ⊆  ( ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ×  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 29 | 
							
								18 28
							 | 
							sstrdi | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( 𝑊 ‘ 𝑋 )  ⊆  ( ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ×  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							xpss12 | 
							⊢ ( ( 𝑋  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ⊆  ( ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ×  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) )  | 
						
						
							| 31 | 
							
								26 5 30
							 | 
							mp2an | 
							⊢ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ⊆  ( ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ×  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ⊆  ( ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ×  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) )  | 
						
						
							| 33 | 
							
								29 32
							 | 
							unssd | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ⊆  ( ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ×  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) )  | 
						
						
							| 34 | 
							
								25 33
							 | 
							jca | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ⊆  𝐴  ∧  ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ⊆  ( ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ×  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							ssdif0 | 
							⊢ ( 𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ↔  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  =  ∅ )  | 
						
						
							| 36 | 
							
								
							 | 
							simpllr | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  | 
						
						
							| 37 | 
							
								18
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( 𝑊 ‘ 𝑋 )  ⊆  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							ssbrd | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  →  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) )  | 
						
						
							| 39 | 
							
								
							 | 
							brxp | 
							⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ↔  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋  ∧  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							simplbi | 
							⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  →  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  | 
						
						
							| 41 | 
							
								38 40
							 | 
							syl6 | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  →  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 ) )  | 
						
						
							| 42 | 
							
								36 41
							 | 
							mtod | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							brxp | 
							⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ↔  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋  ∧  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							simplbi | 
							⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  →  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  | 
						
						
							| 45 | 
							
								36 44
							 | 
							nsyl | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) )  | 
						
						
							| 46 | 
							
								
							 | 
							ovex | 
							⊢ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  V  | 
						
						
							| 47 | 
							
								
							 | 
							breq2 | 
							⊢ ( 𝑦  =  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  →  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ↔  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) )  | 
						
						
							| 48 | 
							
								
							 | 
							brun | 
							⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ↔  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∨  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) )  | 
						
						
							| 49 | 
							
								47 48
							 | 
							bitrdi | 
							⊢ ( 𝑦  =  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  →  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ↔  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∨  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							notbid | 
							⊢ ( 𝑦  =  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  →  ( ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ↔  ¬  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∨  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ) )  | 
						
						
							| 51 | 
							
								46 50
							 | 
							rexsn | 
							⊢ ( ∃ 𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ↔  ¬  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∨  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) )  | 
						
						
							| 52 | 
							
								
							 | 
							ioran | 
							⊢ ( ¬  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∨  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) )  ↔  ( ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) )  | 
						
						
							| 53 | 
							
								51 52
							 | 
							bitri | 
							⊢ ( ∃ 𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ↔  ( ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) )  | 
						
						
							| 54 | 
							
								42 45 53
							 | 
							sylanbrc | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ∃ 𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 )  | 
						
						
							| 55 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  | 
						
						
							| 56 | 
							
								
							 | 
							sssn | 
							⊢ ( 𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ↔  ( 𝑥  =  ∅  ∨  𝑥  =  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 57 | 
							
								55 56
							 | 
							sylib | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( 𝑥  =  ∅  ∨  𝑥  =  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 58 | 
							
								
							 | 
							simplrr | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  𝑥  ≠  ∅ )  | 
						
						
							| 59 | 
							
								58
							 | 
							neneqd | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ¬  𝑥  =  ∅ )  | 
						
						
							| 60 | 
							
								57 59
							 | 
							orcnd | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  𝑥  =  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  | 
						
						
							| 61 | 
							
								60
							 | 
							raleqdv | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( ∀ 𝑧  ∈  𝑥 ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ↔  ∀ 𝑧  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) )  | 
						
						
							| 62 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑧  =  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  →  ( 𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ↔  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							notbid | 
							⊢ ( 𝑧  =  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  →  ( ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ↔  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) )  | 
						
						
							| 64 | 
							
								46 63
							 | 
							ralsn | 
							⊢ ( ∀ 𝑧  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ↔  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 )  | 
						
						
							| 65 | 
							
								61 64
							 | 
							bitrdi | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( ∀ 𝑧  ∈  𝑥 ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ↔  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) )  | 
						
						
							| 66 | 
							
								60 65
							 | 
							rexeqbidv | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ↔  ∃ 𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) )  | 
						
						
							| 67 | 
							
								54 66
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 )  | 
						
						
							| 68 | 
							
								67
							 | 
							ex | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  →  ( 𝑥  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) )  | 
						
						
							| 69 | 
							
								35 68
							 | 
							biimtrrid | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  →  ( ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  =  ∅  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) )  | 
						
						
							| 70 | 
							
								
							 | 
							vex | 
							⊢ 𝑥  ∈  V  | 
						
						
							| 71 | 
							
								
							 | 
							difexg | 
							⊢ ( 𝑥  ∈  V  →  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∈  V )  | 
						
						
							| 72 | 
							
								70 71
							 | 
							mp1i | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  →  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∈  V )  | 
						
						
							| 73 | 
							
								
							 | 
							wefr | 
							⊢ ( ( 𝑊 ‘ 𝑋 )  We  𝑋  →  ( 𝑊 ‘ 𝑋 )  Fr  𝑋 )  | 
						
						
							| 74 | 
							
								20 73
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( 𝑊 ‘ 𝑋 )  Fr  𝑋 )  | 
						
						
							| 75 | 
							
								74
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  →  ( 𝑊 ‘ 𝑋 )  Fr  𝑋 )  | 
						
						
							| 76 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  →  𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 77 | 
							
								
							 | 
							uncom | 
							⊢ ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  =  ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∪  𝑋 )  | 
						
						
							| 78 | 
							
								76 77
							 | 
							sseqtrdi | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  →  𝑥  ⊆  ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∪  𝑋 ) )  | 
						
						
							| 79 | 
							
								
							 | 
							ssundif | 
							⊢ ( 𝑥  ⊆  ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∪  𝑋 )  ↔  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ⊆  𝑋 )  | 
						
						
							| 80 | 
							
								78 79
							 | 
							sylib | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  →  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ⊆  𝑋 )  | 
						
						
							| 81 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  →  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  | 
						
						
							| 82 | 
							
								
							 | 
							fri | 
							⊢ ( ( ( ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∈  V  ∧  ( 𝑊 ‘ 𝑋 )  Fr  𝑋 )  ∧  ( ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ⊆  𝑋  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ ) )  →  ∃ 𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∀ 𝑧  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 )  | 
						
						
							| 83 | 
							
								72 75 80 81 82
							 | 
							syl22anc | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  →  ∃ 𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∀ 𝑧  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 )  | 
						
						
							| 84 | 
							
								
							 | 
							brun | 
							⊢ ( 𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ↔  ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦  ∨  𝑧 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) )  | 
						
						
							| 85 | 
							
								
							 | 
							idd | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦  →  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) )  | 
						
						
							| 86 | 
							
								
							 | 
							brxp | 
							⊢ ( 𝑧 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦  ↔  ( 𝑧  ∈  𝑋  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 87 | 
							
								86
							 | 
							simprbi | 
							⊢ ( 𝑧 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦  →  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  | 
						
						
							| 88 | 
							
								
							 | 
							eldifn | 
							⊢ ( 𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ¬  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  | 
						
						
							| 89 | 
							
								88
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ¬  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  | 
						
						
							| 90 | 
							
								89
							 | 
							pm2.21d | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( 𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  →  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) )  | 
						
						
							| 91 | 
							
								87 90
							 | 
							syl5 | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( 𝑧 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦  →  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) )  | 
						
						
							| 92 | 
							
								85 91
							 | 
							jaod | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦  ∨  𝑧 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 )  →  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) )  | 
						
						
							| 93 | 
							
								84 92
							 | 
							biimtrid | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( 𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  →  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							con3d | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( ¬  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦  →  ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) )  | 
						
						
							| 95 | 
							
								94
							 | 
							ralimdv | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( ∀ 𝑧  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦  →  ∀ 𝑧  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) )  | 
						
						
							| 96 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  | 
						
						
							| 97 | 
							
								96
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  | 
						
						
							| 98 | 
							
								18
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( 𝑊 ‘ 𝑋 )  ⊆  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							ssbrd | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦  →  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  𝑋 ) 𝑦 ) )  | 
						
						
							| 100 | 
							
								
							 | 
							brxp | 
							⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  𝑋 ) 𝑦  ↔  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  | 
						
						
							| 101 | 
							
								100
							 | 
							simplbi | 
							⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  𝑋 ) 𝑦  →  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  | 
						
						
							| 102 | 
							
								99 101
							 | 
							syl6 | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦  →  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 ) )  | 
						
						
							| 103 | 
							
								97 102
							 | 
							mtod | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 )  | 
						
						
							| 104 | 
							
								
							 | 
							brxp | 
							⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦  ↔  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							simprbi | 
							⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦  →  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  | 
						
						
							| 106 | 
							
								89 105
							 | 
							nsyl | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 )  | 
						
						
							| 107 | 
							
								
							 | 
							brun | 
							⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ↔  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦  ∨  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) )  | 
						
						
							| 108 | 
							
								62 107
							 | 
							bitrdi | 
							⊢ ( 𝑧  =  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  →  ( 𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ↔  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦  ∨  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ) )  | 
						
						
							| 109 | 
							
								108
							 | 
							notbid | 
							⊢ ( 𝑧  =  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  →  ( ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ↔  ¬  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦  ∨  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ) )  | 
						
						
							| 110 | 
							
								46 109
							 | 
							ralsn | 
							⊢ ( ∀ 𝑧  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ↔  ¬  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦  ∨  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) )  | 
						
						
							| 111 | 
							
								
							 | 
							ioran | 
							⊢ ( ¬  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦  ∨  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 )  ↔  ( ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) )  | 
						
						
							| 112 | 
							
								110 111
							 | 
							bitri | 
							⊢ ( ∀ 𝑧  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ↔  ( ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) )  | 
						
						
							| 113 | 
							
								103 106 112
							 | 
							sylanbrc | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ∀ 𝑧  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 )  | 
						
						
							| 114 | 
							
								95 113
							 | 
							jctird | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( ∀ 𝑧  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦  →  ( ∀ 𝑧  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ∧  ∀ 𝑧  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) )  | 
						
						
							| 115 | 
							
								
							 | 
							ssun1 | 
							⊢ 𝑥  ⊆  ( 𝑥  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  | 
						
						
							| 116 | 
							
								
							 | 
							undif1 | 
							⊢ ( ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  =  ( 𝑥  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  | 
						
						
							| 117 | 
							
								115 116
							 | 
							sseqtrri | 
							⊢ 𝑥  ⊆  ( ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  | 
						
						
							| 118 | 
							
								
							 | 
							ralun | 
							⊢ ( ( ∀ 𝑧  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ∧  ∀ 𝑧  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 )  →  ∀ 𝑧  ∈  ( ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 )  | 
						
						
							| 119 | 
							
								
							 | 
							ssralv | 
							⊢ ( 𝑥  ⊆  ( ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( ∀ 𝑧  ∈  ( ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  →  ∀ 𝑧  ∈  𝑥 ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) )  | 
						
						
							| 120 | 
							
								117 118 119
							 | 
							mpsyl | 
							⊢ ( ( ∀ 𝑧  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ∧  ∀ 𝑧  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 )  →  ∀ 𝑧  ∈  𝑥 ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 )  | 
						
						
							| 121 | 
							
								114 120
							 | 
							syl6 | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( ∀ 𝑧  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦  →  ∀ 𝑧  ∈  𝑥 ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) )  | 
						
						
							| 122 | 
							
								
							 | 
							eldifi | 
							⊢ ( 𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  𝑦  ∈  𝑥 )  | 
						
						
							| 123 | 
							
								122
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  𝑦  ∈  𝑥 )  | 
						
						
							| 124 | 
							
								121 123
							 | 
							jctild | 
							⊢ ( ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  ∧  𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( ∀ 𝑧  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦  →  ( 𝑦  ∈  𝑥  ∧  ∀ 𝑧  ∈  𝑥 ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) )  | 
						
						
							| 125 | 
							
								124
							 | 
							expimpd | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  →  ( ( 𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  ∀ 𝑧  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 )  →  ( 𝑦  ∈  𝑥  ∧  ∀ 𝑧  ∈  𝑥 ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) )  | 
						
						
							| 126 | 
							
								125
							 | 
							reximdv2 | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  →  ( ∃ 𝑦  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∀ 𝑧  ∈  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) )  | 
						
						
							| 127 | 
							
								83 126
							 | 
							mpd | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  ∧  ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 )  | 
						
						
							| 128 | 
							
								127
							 | 
							ex | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  →  ( ( 𝑥  ∖  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ≠  ∅  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) )  | 
						
						
							| 129 | 
							
								69 128
							 | 
							pm2.61dne | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ ) )  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 )  | 
						
						
							| 130 | 
							
								129
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) )  | 
						
						
							| 131 | 
							
								130
							 | 
							alrimiv | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ∀ 𝑥 ( ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) )  | 
						
						
							| 132 | 
							
								
							 | 
							df-fr | 
							⊢ ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  Fr  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ↔  ∀ 𝑥 ( ( 𝑥  ⊆  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑥  ≠  ∅ )  →  ∃ 𝑦  ∈  𝑥 ∀ 𝑧  ∈  𝑥 ¬  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) )  | 
						
						
							| 133 | 
							
								131 132
							 | 
							sylibr | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  Fr  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 134 | 
							
								
							 | 
							elun | 
							⊢ ( 𝑥  ∈  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ↔  ( 𝑥  ∈  𝑋  ∨  𝑥  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 135 | 
							
								
							 | 
							elun | 
							⊢ ( 𝑦  ∈  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ↔  ( 𝑦  ∈  𝑋  ∨  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 136 | 
							
								134 135
							 | 
							anbi12i | 
							⊢ ( ( 𝑥  ∈  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑦  ∈  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ↔  ( ( 𝑥  ∈  𝑋  ∨  𝑥  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  ( 𝑦  ∈  𝑋  ∨  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) )  | 
						
						
							| 137 | 
							
								
							 | 
							weso | 
							⊢ ( ( 𝑊 ‘ 𝑋 )  We  𝑋  →  ( 𝑊 ‘ 𝑋 )  Or  𝑋 )  | 
						
						
							| 138 | 
							
								20 137
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( 𝑊 ‘ 𝑋 )  Or  𝑋 )  | 
						
						
							| 139 | 
							
								
							 | 
							solin | 
							⊢ ( ( ( 𝑊 ‘ 𝑋 )  Or  𝑋  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 ( 𝑊 ‘ 𝑋 ) 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 ( 𝑊 ‘ 𝑋 ) 𝑥 ) )  | 
						
						
							| 140 | 
							
								138 139
							 | 
							sylan | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 ( 𝑊 ‘ 𝑋 ) 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 ( 𝑊 ‘ 𝑋 ) 𝑥 ) )  | 
						
						
							| 141 | 
							
								
							 | 
							ssun1 | 
							⊢ ( 𝑊 ‘ 𝑋 )  ⊆  ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 142 | 
							
								141
							 | 
							a1i | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑊 ‘ 𝑋 )  ⊆  ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) )  | 
						
						
							| 143 | 
							
								142
							 | 
							ssbrd | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 ( 𝑊 ‘ 𝑋 ) 𝑦  →  𝑥 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) )  | 
						
						
							| 144 | 
							
								
							 | 
							idd | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥  =  𝑦  →  𝑥  =  𝑦 ) )  | 
						
						
							| 145 | 
							
								142
							 | 
							ssbrd | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑦 ( 𝑊 ‘ 𝑋 ) 𝑥  →  𝑦 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) )  | 
						
						
							| 146 | 
							
								143 144 145
							 | 
							3orim123d | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝑥 ( 𝑊 ‘ 𝑋 ) 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 ( 𝑊 ‘ 𝑋 ) 𝑥 )  →  ( 𝑥 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) )  | 
						
						
							| 147 | 
							
								140 146
							 | 
							mpd | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) )  | 
						
						
							| 148 | 
							
								147
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) )  | 
						
						
							| 149 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∧  𝑦  ∈  𝑋 ) )  | 
						
						
							| 150 | 
							
								149
							 | 
							ancomd | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑦  ∈  𝑋  ∧  𝑥  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 151 | 
							
								
							 | 
							brxp | 
							⊢ ( 𝑦 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑥  ↔  ( 𝑦  ∈  𝑋  ∧  𝑥  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 152 | 
							
								150 151
							 | 
							sylibr | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∧  𝑦  ∈  𝑋 ) )  →  𝑦 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑥 )  | 
						
						
							| 153 | 
							
								
							 | 
							ssun2 | 
							⊢ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ⊆  ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 154 | 
							
								153
							 | 
							ssbri | 
							⊢ ( 𝑦 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑥  →  𝑦 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 )  | 
						
						
							| 155 | 
							
								
							 | 
							3mix3 | 
							⊢ ( 𝑦 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥  →  ( 𝑥 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) )  | 
						
						
							| 156 | 
							
								152 154 155
							 | 
							3syl | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) )  | 
						
						
							| 157 | 
							
								156
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( ( 𝑥  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) )  | 
						
						
							| 158 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 159 | 
							
								
							 | 
							brxp | 
							⊢ ( 𝑥 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦  ↔  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 160 | 
							
								158 159
							 | 
							sylibr | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  𝑥 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 )  | 
						
						
							| 161 | 
							
								153
							 | 
							ssbri | 
							⊢ ( 𝑥 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦  →  𝑥 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 )  | 
						
						
							| 162 | 
							
								
							 | 
							3mix1 | 
							⊢ ( 𝑥 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  →  ( 𝑥 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) )  | 
						
						
							| 163 | 
							
								160 161 162
							 | 
							3syl | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( 𝑥 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) )  | 
						
						
							| 164 | 
							
								163
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( 𝑥 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) )  | 
						
						
							| 165 | 
							
								
							 | 
							elsni | 
							⊢ ( 𝑥  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  →  𝑥  =  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) )  | 
						
						
							| 166 | 
							
								
							 | 
							elsni | 
							⊢ ( 𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  →  𝑦  =  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) )  | 
						
						
							| 167 | 
							
								
							 | 
							eqtr3 | 
							⊢ ( ( 𝑥  =  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∧  𝑦  =  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) )  →  𝑥  =  𝑦 )  | 
						
						
							| 168 | 
							
								165 166 167
							 | 
							syl2an | 
							⊢ ( ( 𝑥  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  𝑥  =  𝑦 )  | 
						
						
							| 169 | 
							
								168
							 | 
							3mix2d | 
							⊢ ( ( 𝑥  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( 𝑥 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) )  | 
						
						
							| 170 | 
							
								169
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( ( 𝑥  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( 𝑥 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) )  | 
						
						
							| 171 | 
							
								148 157 164 170
							 | 
							ccased | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( ( ( 𝑥  ∈  𝑋  ∨  𝑥  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  ( 𝑦  ∈  𝑋  ∨  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( 𝑥 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) )  | 
						
						
							| 172 | 
							
								136 171
							 | 
							biimtrid | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( ( 𝑥  ∈  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑦  ∈  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( 𝑥 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) )  | 
						
						
							| 173 | 
							
								172
							 | 
							ralrimivv | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ∀ 𝑥  ∈  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∀ 𝑦  ∈  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑥 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) )  | 
						
						
							| 174 | 
							
								
							 | 
							dfwe2 | 
							⊢ ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  We  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ↔  ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  Fr  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  ∀ 𝑥  ∈  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∀ 𝑦  ∈  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑥 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ∨  𝑥  =  𝑦  ∨  𝑦 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) )  | 
						
						
							| 175 | 
							
								133 173 174
							 | 
							sylanbrc | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  We  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 176 | 
							
								1
							 | 
							fpwwe2cbv | 
							⊢ 𝑊  =  { 〈 𝑎 ,  𝑠 〉  ∣  ( ( 𝑎  ⊆  𝐴  ∧  𝑠  ⊆  ( 𝑎  ×  𝑎 ) )  ∧  ( 𝑠  We  𝑎  ∧  ∀ 𝑧  ∈  𝑎 [ ( ◡ 𝑠  “  { 𝑧 } )  /  𝑏 ] ( 𝑏 𝐹 ( 𝑠  ∩  ( 𝑏  ×  𝑏 ) ) )  =  𝑧 ) ) }  | 
						
						
							| 177 | 
							
								176 6 13
							 | 
							fpwwe2lem3 | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) 𝐹 ( ( 𝑊 ‘ 𝑋 )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) ) )  =  𝑦 )  | 
						
						
							| 178 | 
							
								
							 | 
							cnvimass | 
							⊢ ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  ⊆  dom  ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 179 | 
							
								
							 | 
							fvex | 
							⊢ ( 𝑊 ‘ 𝑋 )  ∈  V  | 
						
						
							| 180 | 
							
								
							 | 
							snex | 
							⊢ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∈  V  | 
						
						
							| 181 | 
							
								
							 | 
							xpexg | 
							⊢ ( ( 𝑋  ∈  dom  𝑊  ∧  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∈  V )  →  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∈  V )  | 
						
						
							| 182 | 
							
								8 180 181
							 | 
							sylancl | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∈  V )  | 
						
						
							| 183 | 
							
								
							 | 
							unexg | 
							⊢ ( ( ( 𝑊 ‘ 𝑋 )  ∈  V  ∧  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∈  V )  →  ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∈  V )  | 
						
						
							| 184 | 
							
								179 182 183
							 | 
							sylancr | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∈  V )  | 
						
						
							| 185 | 
							
								184
							 | 
							dmexd | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  dom  ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∈  V )  | 
						
						
							| 186 | 
							
								
							 | 
							ssexg | 
							⊢ ( ( ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  ⊆  dom  ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∧  dom  ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∈  V )  →  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  ∈  V )  | 
						
						
							| 187 | 
							
								178 185 186
							 | 
							sylancr | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  ∈  V )  | 
						
						
							| 188 | 
							
								187
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  ∈  V )  | 
						
						
							| 189 | 
							
								
							 | 
							id | 
							⊢ ( 𝑢  =  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  →  𝑢  =  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } ) )  | 
						
						
							| 190 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  𝑦  ∈  𝑋 )  | 
						
						
							| 191 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  | 
						
						
							| 192 | 
							
								
							 | 
							nelne2 | 
							⊢ ( ( 𝑦  ∈  𝑋  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  𝑦  ≠  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) )  | 
						
						
							| 193 | 
							
								190 191 192
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  𝑦  ≠  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) )  | 
						
						
							| 194 | 
							
								87 166
							 | 
							syl | 
							⊢ ( 𝑧 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦  →  𝑦  =  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) )  | 
						
						
							| 195 | 
							
								194
							 | 
							necon3ai | 
							⊢ ( 𝑦  ≠  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  →  ¬  𝑧 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 )  | 
						
						
							| 196 | 
							
								
							 | 
							biorf | 
							⊢ ( ¬  𝑧 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦  →  ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦  ↔  ( 𝑧 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦  ∨  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) )  | 
						
						
							| 197 | 
							
								193 195 196
							 | 
							3syl | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦  ↔  ( 𝑧 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦  ∨  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) )  | 
						
						
							| 198 | 
							
								
							 | 
							orcom | 
							⊢ ( ( 𝑧 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦  ∨  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 )  ↔  ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦  ∨  𝑧 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) )  | 
						
						
							| 199 | 
							
								198 84
							 | 
							bitr4i | 
							⊢ ( ( 𝑧 ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦  ∨  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 )  ↔  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 )  | 
						
						
							| 200 | 
							
								197 199
							 | 
							bitr2di | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦  ↔  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) )  | 
						
						
							| 201 | 
							
								
							 | 
							vex | 
							⊢ 𝑧  ∈  V  | 
						
						
							| 202 | 
							
								201
							 | 
							eliniseg | 
							⊢ ( 𝑦  ∈  V  →  ( 𝑧  ∈  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  ↔  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) )  | 
						
						
							| 203 | 
							
								202
							 | 
							elv | 
							⊢ ( 𝑧  ∈  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  ↔  𝑧 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 )  | 
						
						
							| 204 | 
							
								201
							 | 
							eliniseg | 
							⊢ ( 𝑦  ∈  V  →  ( 𝑧  ∈  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ↔  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) )  | 
						
						
							| 205 | 
							
								204
							 | 
							elv | 
							⊢ ( 𝑧  ∈  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ↔  𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 )  | 
						
						
							| 206 | 
							
								200 203 205
							 | 
							3bitr4g | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑧  ∈  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  ↔  𝑧  ∈  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) )  | 
						
						
							| 207 | 
							
								206
							 | 
							eqrdv | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  =  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) )  | 
						
						
							| 208 | 
							
								189 207
							 | 
							sylan9eqr | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑢  =  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } ) )  →  𝑢  =  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) )  | 
						
						
							| 209 | 
							
								208
							 | 
							sqxpeqd | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑢  =  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } ) )  →  ( 𝑢  ×  𝑢 )  =  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) )  | 
						
						
							| 210 | 
							
								209
							 | 
							ineq2d | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑢  =  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } ) )  →  ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑢  ×  𝑢 ) )  =  ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) ) )  | 
						
						
							| 211 | 
							
								
							 | 
							indir | 
							⊢ ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) )  =  ( ( ( 𝑊 ‘ 𝑋 )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) )  ∪  ( ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) ) )  | 
						
						
							| 212 | 
							
								
							 | 
							inxp | 
							⊢ ( ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) )  =  ( ( 𝑋  ∩  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) )  ×  ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∩  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) )  | 
						
						
							| 213 | 
							
								
							 | 
							incom | 
							⊢ ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∩  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) )  =  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ∩  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  | 
						
						
							| 214 | 
							
								
							 | 
							cnvimass | 
							⊢ ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ⊆  dom  ( 𝑊 ‘ 𝑋 )  | 
						
						
							| 215 | 
							
								18
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑊 ‘ 𝑋 )  ⊆  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 216 | 
							
								
							 | 
							dmss | 
							⊢ ( ( 𝑊 ‘ 𝑋 )  ⊆  ( 𝑋  ×  𝑋 )  →  dom  ( 𝑊 ‘ 𝑋 )  ⊆  dom  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 217 | 
							
								215 216
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  dom  ( 𝑊 ‘ 𝑋 )  ⊆  dom  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 218 | 
							
								
							 | 
							dmxpid | 
							⊢ dom  ( 𝑋  ×  𝑋 )  =  𝑋  | 
						
						
							| 219 | 
							
								217 218
							 | 
							sseqtrdi | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  dom  ( 𝑊 ‘ 𝑋 )  ⊆  𝑋 )  | 
						
						
							| 220 | 
							
								214 219
							 | 
							sstrid | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ⊆  𝑋 )  | 
						
						
							| 221 | 
							
								220 191
							 | 
							ssneldd | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) )  | 
						
						
							| 222 | 
							
								
							 | 
							disjsn | 
							⊢ ( ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ∩  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  =  ∅  ↔  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) )  | 
						
						
							| 223 | 
							
								221 222
							 | 
							sylibr | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ∩  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  =  ∅ )  | 
						
						
							| 224 | 
							
								213 223
							 | 
							eqtrid | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∩  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) )  =  ∅ )  | 
						
						
							| 225 | 
							
								224
							 | 
							xpeq2d | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑋  ∩  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) )  ×  ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∩  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) )  =  ( ( 𝑋  ∩  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) )  ×  ∅ ) )  | 
						
						
							| 226 | 
							
								
							 | 
							xp0 | 
							⊢ ( ( 𝑋  ∩  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) )  ×  ∅ )  =  ∅  | 
						
						
							| 227 | 
							
								225 226
							 | 
							eqtrdi | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑋  ∩  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) )  ×  ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∩  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) )  =  ∅ )  | 
						
						
							| 228 | 
							
								212 227
							 | 
							eqtrid | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) )  =  ∅ )  | 
						
						
							| 229 | 
							
								228
							 | 
							uneq2d | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( ( 𝑊 ‘ 𝑋 )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) )  ∪  ( ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) ) )  =  ( ( ( 𝑊 ‘ 𝑋 )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) )  ∪  ∅ ) )  | 
						
						
							| 230 | 
							
								211 229
							 | 
							eqtrid | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) )  =  ( ( ( 𝑊 ‘ 𝑋 )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) )  ∪  ∅ ) )  | 
						
						
							| 231 | 
							
								
							 | 
							un0 | 
							⊢ ( ( ( 𝑊 ‘ 𝑋 )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) )  ∪  ∅ )  =  ( ( 𝑊 ‘ 𝑋 )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) )  | 
						
						
							| 232 | 
							
								230 231
							 | 
							eqtrdi | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) )  =  ( ( 𝑊 ‘ 𝑋 )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) ) )  | 
						
						
							| 233 | 
							
								232
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑢  =  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } ) )  →  ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) )  =  ( ( 𝑊 ‘ 𝑋 )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) ) )  | 
						
						
							| 234 | 
							
								210 233
							 | 
							eqtrd | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑢  =  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } ) )  →  ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑢  ×  𝑢 ) )  =  ( ( 𝑊 ‘ 𝑋 )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) ) )  | 
						
						
							| 235 | 
							
								208 234
							 | 
							oveq12d | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑢  =  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } ) )  →  ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) 𝐹 ( ( 𝑊 ‘ 𝑋 )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) ) ) )  | 
						
						
							| 236 | 
							
								235
							 | 
							eqeq1d | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  ∧  𝑢  =  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } ) )  →  ( ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦  ↔  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) 𝐹 ( ( 𝑊 ‘ 𝑋 )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) ) )  =  𝑦 ) )  | 
						
						
							| 237 | 
							
								188 236
							 | 
							sbcied | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  ( [ ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦  ↔  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) 𝐹 ( ( 𝑊 ‘ 𝑋 )  ∩  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ×  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } ) ) ) )  =  𝑦 ) )  | 
						
						
							| 238 | 
							
								177 237
							 | 
							mpbird | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  𝑋 )  →  [ ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 )  | 
						
						
							| 239 | 
							
								166
							 | 
							adantl | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  𝑦  =  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) )  | 
						
						
							| 240 | 
							
								239
							 | 
							eqcomd | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  =  𝑦 )  | 
						
						
							| 241 | 
							
								187
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  ∈  V )  | 
						
						
							| 242 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  | 
						
						
							| 243 | 
							
								239
							 | 
							eleq1d | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( 𝑦  ∈  dom  ◡ ( 𝑊 ‘ 𝑋 )  ↔  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  dom  ◡ ( 𝑊 ‘ 𝑋 ) ) )  | 
						
						
							| 244 | 
							
								18
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( 𝑊 ‘ 𝑋 )  ⊆  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 245 | 
							
								
							 | 
							rnss | 
							⊢ ( ( 𝑊 ‘ 𝑋 )  ⊆  ( 𝑋  ×  𝑋 )  →  ran  ( 𝑊 ‘ 𝑋 )  ⊆  ran  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 246 | 
							
								244 245
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ran  ( 𝑊 ‘ 𝑋 )  ⊆  ran  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 247 | 
							
								
							 | 
							df-rn | 
							⊢ ran  ( 𝑊 ‘ 𝑋 )  =  dom  ◡ ( 𝑊 ‘ 𝑋 )  | 
						
						
							| 248 | 
							
								
							 | 
							rnxpid | 
							⊢ ran  ( 𝑋  ×  𝑋 )  =  𝑋  | 
						
						
							| 249 | 
							
								246 247 248
							 | 
							3sstr3g | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  dom  ◡ ( 𝑊 ‘ 𝑋 )  ⊆  𝑋 )  | 
						
						
							| 250 | 
							
								249
							 | 
							sseld | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  dom  ◡ ( 𝑊 ‘ 𝑋 )  →  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 ) )  | 
						
						
							| 251 | 
							
								243 250
							 | 
							sylbid | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( 𝑦  ∈  dom  ◡ ( 𝑊 ‘ 𝑋 )  →  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 ) )  | 
						
						
							| 252 | 
							
								242 251
							 | 
							mtod | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ¬  𝑦  ∈  dom  ◡ ( 𝑊 ‘ 𝑋 ) )  | 
						
						
							| 253 | 
							
								
							 | 
							ndmima | 
							⊢ ( ¬  𝑦  ∈  dom  ◡ ( 𝑊 ‘ 𝑋 )  →  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  =  ∅ )  | 
						
						
							| 254 | 
							
								252 253
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  =  ∅ )  | 
						
						
							| 255 | 
							
								239
							 | 
							sneqd | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  { 𝑦 }  =  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  | 
						
						
							| 256 | 
							
								255
							 | 
							imaeq2d | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( ◡ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  “  { 𝑦 } )  =  ( ◡ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  “  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 257 | 
							
								
							 | 
							df-ima | 
							⊢ ( ◡ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  “  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  =  ran  ( ◡ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ↾  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  | 
						
						
							| 258 | 
							
								
							 | 
							cnvxp | 
							⊢ ◡ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  =  ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ×  𝑋 )  | 
						
						
							| 259 | 
							
								258
							 | 
							reseq1i | 
							⊢ ( ◡ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ↾  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  =  ( ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ×  𝑋 )  ↾  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  | 
						
						
							| 260 | 
							
								
							 | 
							ssid | 
							⊢ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  | 
						
						
							| 261 | 
							
								
							 | 
							xpssres | 
							⊢ ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ⊆  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  →  ( ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ×  𝑋 )  ↾  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  =  ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ×  𝑋 ) )  | 
						
						
							| 262 | 
							
								260 261
							 | 
							ax-mp | 
							⊢ ( ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ×  𝑋 )  ↾  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  =  ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ×  𝑋 )  | 
						
						
							| 263 | 
							
								259 262
							 | 
							eqtri | 
							⊢ ( ◡ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ↾  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  =  ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ×  𝑋 )  | 
						
						
							| 264 | 
							
								263
							 | 
							rneqi | 
							⊢ ran  ( ◡ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ↾  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  =  ran  ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ×  𝑋 )  | 
						
						
							| 265 | 
							
								46
							 | 
							snnz | 
							⊢ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ≠  ∅  | 
						
						
							| 266 | 
							
								
							 | 
							rnxp | 
							⊢ ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ≠  ∅  →  ran  ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ×  𝑋 )  =  𝑋 )  | 
						
						
							| 267 | 
							
								265 266
							 | 
							ax-mp | 
							⊢ ran  ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ×  𝑋 )  =  𝑋  | 
						
						
							| 268 | 
							
								264 267
							 | 
							eqtri | 
							⊢ ran  ( ◡ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ↾  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  =  𝑋  | 
						
						
							| 269 | 
							
								257 268
							 | 
							eqtri | 
							⊢ ( ◡ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  “  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  =  𝑋  | 
						
						
							| 270 | 
							
								256 269
							 | 
							eqtrdi | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( ◡ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  “  { 𝑦 } )  =  𝑋 )  | 
						
						
							| 271 | 
							
								254 270
							 | 
							uneq12d | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ∪  ( ◡ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  “  { 𝑦 } ) )  =  ( ∅  ∪  𝑋 ) )  | 
						
						
							| 272 | 
							
								
							 | 
							cnvun | 
							⊢ ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  =  ( ◡ ( 𝑊 ‘ 𝑋 )  ∪  ◡ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  | 
						
						
							| 273 | 
							
								272
							 | 
							imaeq1i | 
							⊢ ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  =  ( ( ◡ ( 𝑊 ‘ 𝑋 )  ∪  ◡ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  | 
						
						
							| 274 | 
							
								
							 | 
							imaundir | 
							⊢ ( ( ◡ ( 𝑊 ‘ 𝑋 )  ∪  ◡ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  =  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ∪  ( ◡ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  “  { 𝑦 } ) )  | 
						
						
							| 275 | 
							
								273 274
							 | 
							eqtri | 
							⊢ ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  =  ( ( ◡ ( 𝑊 ‘ 𝑋 )  “  { 𝑦 } )  ∪  ( ◡ ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  “  { 𝑦 } ) )  | 
						
						
							| 276 | 
							
								
							 | 
							un0 | 
							⊢ ( 𝑋  ∪  ∅ )  =  𝑋  | 
						
						
							| 277 | 
							
								
							 | 
							uncom | 
							⊢ ( 𝑋  ∪  ∅ )  =  ( ∅  ∪  𝑋 )  | 
						
						
							| 278 | 
							
								276 277
							 | 
							eqtr3i | 
							⊢ 𝑋  =  ( ∅  ∪  𝑋 )  | 
						
						
							| 279 | 
							
								271 275 278
							 | 
							3eqtr4g | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  =  𝑋 )  | 
						
						
							| 280 | 
							
								189 279
							 | 
							sylan9eqr | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑢  =  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } ) )  →  𝑢  =  𝑋 )  | 
						
						
							| 281 | 
							
								280
							 | 
							sqxpeqd | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑢  =  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } ) )  →  ( 𝑢  ×  𝑢 )  =  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 282 | 
							
								281
							 | 
							ineq2d | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑢  =  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } ) )  →  ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑢  ×  𝑢 ) )  =  ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑋  ×  𝑋 ) ) )  | 
						
						
							| 283 | 
							
								
							 | 
							indir | 
							⊢ ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑋  ×  𝑋 ) )  =  ( ( ( 𝑊 ‘ 𝑋 )  ∩  ( 𝑋  ×  𝑋 ) )  ∪  ( ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∩  ( 𝑋  ×  𝑋 ) ) )  | 
						
						
							| 284 | 
							
								
							 | 
							dfss2 | 
							⊢ ( ( 𝑊 ‘ 𝑋 )  ⊆  ( 𝑋  ×  𝑋 )  ↔  ( ( 𝑊 ‘ 𝑋 )  ∩  ( 𝑋  ×  𝑋 ) )  =  ( 𝑊 ‘ 𝑋 ) )  | 
						
						
							| 285 | 
							
								244 284
							 | 
							sylib | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( ( 𝑊 ‘ 𝑋 )  ∩  ( 𝑋  ×  𝑋 ) )  =  ( 𝑊 ‘ 𝑋 ) )  | 
						
						
							| 286 | 
							
								
							 | 
							incom | 
							⊢ ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∩  𝑋 )  =  ( 𝑋  ∩  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  | 
						
						
							| 287 | 
							
								
							 | 
							disjsn | 
							⊢ ( ( 𝑋  ∩  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  =  ∅  ↔  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  | 
						
						
							| 288 | 
							
								242 287
							 | 
							sylibr | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( 𝑋  ∩  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  =  ∅ )  | 
						
						
							| 289 | 
							
								286 288
							 | 
							eqtrid | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∩  𝑋 )  =  ∅ )  | 
						
						
							| 290 | 
							
								289
							 | 
							xpeq2d | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( 𝑋  ×  ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∩  𝑋 ) )  =  ( 𝑋  ×  ∅ ) )  | 
						
						
							| 291 | 
							
								
							 | 
							xpindi | 
							⊢ ( 𝑋  ×  ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ∩  𝑋 ) )  =  ( ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∩  ( 𝑋  ×  𝑋 ) )  | 
						
						
							| 292 | 
							
								
							 | 
							xp0 | 
							⊢ ( 𝑋  ×  ∅ )  =  ∅  | 
						
						
							| 293 | 
							
								290 291 292
							 | 
							3eqtr3g | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∩  ( 𝑋  ×  𝑋 ) )  =  ∅ )  | 
						
						
							| 294 | 
							
								285 293
							 | 
							uneq12d | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( ( ( 𝑊 ‘ 𝑋 )  ∩  ( 𝑋  ×  𝑋 ) )  ∪  ( ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∩  ( 𝑋  ×  𝑋 ) ) )  =  ( ( 𝑊 ‘ 𝑋 )  ∪  ∅ ) )  | 
						
						
							| 295 | 
							
								283 294
							 | 
							eqtrid | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑋  ×  𝑋 ) )  =  ( ( 𝑊 ‘ 𝑋 )  ∪  ∅ ) )  | 
						
						
							| 296 | 
							
								
							 | 
							un0 | 
							⊢ ( ( 𝑊 ‘ 𝑋 )  ∪  ∅ )  =  ( 𝑊 ‘ 𝑋 )  | 
						
						
							| 297 | 
							
								295 296
							 | 
							eqtrdi | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑋  ×  𝑋 ) )  =  ( 𝑊 ‘ 𝑋 ) )  | 
						
						
							| 298 | 
							
								297
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑢  =  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } ) )  →  ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑋  ×  𝑋 ) )  =  ( 𝑊 ‘ 𝑋 ) )  | 
						
						
							| 299 | 
							
								282 298
							 | 
							eqtrd | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑢  =  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } ) )  →  ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑢  ×  𝑢 ) )  =  ( 𝑊 ‘ 𝑋 ) )  | 
						
						
							| 300 | 
							
								280 299
							 | 
							oveq12d | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑢  =  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } ) )  →  ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) )  | 
						
						
							| 301 | 
							
								300
							 | 
							eqeq1d | 
							⊢ ( ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  𝑢  =  ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } ) )  →  ( ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦  ↔  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  =  𝑦 ) )  | 
						
						
							| 302 | 
							
								241 301
							 | 
							sbcied | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  ( [ ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦  ↔  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  =  𝑦 ) )  | 
						
						
							| 303 | 
							
								240 302
							 | 
							mpbird | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  →  [ ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 )  | 
						
						
							| 304 | 
							
								238 303
							 | 
							jaodan | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  ( 𝑦  ∈  𝑋  ∨  𝑦  ∈  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  [ ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 )  | 
						
						
							| 305 | 
							
								135 304
							 | 
							sylan2b | 
							⊢ ( ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  ∧  𝑦  ∈  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  [ ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 )  | 
						
						
							| 306 | 
							
								305
							 | 
							ralrimiva | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ∀ 𝑦  ∈  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) [ ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 )  | 
						
						
							| 307 | 
							
								175 306
							 | 
							jca | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  We  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  ∀ 𝑦  ∈  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) [ ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) )  | 
						
						
							| 308 | 
							
								1 2
							 | 
							fpwwe2lem2 | 
							⊢ ( 𝜑  →  ( ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑊 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ↔  ( ( ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ⊆  𝐴  ∧  ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ⊆  ( ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ×  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) )  ∧  ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  We  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  ∀ 𝑦  ∈  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) [ ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) ) )  | 
						
						
							| 309 | 
							
								308
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑊 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ↔  ( ( ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ⊆  𝐴  ∧  ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ⊆  ( ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ×  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) )  ∧  ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  We  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∧  ∀ 𝑦  ∈  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) [ ( ◡ ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) ) )  | 
						
						
							| 310 | 
							
								34 307 309
							 | 
							mpbir2and | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑊 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) )  | 
						
						
							| 311 | 
							
								1
							 | 
							relopabiv | 
							⊢ Rel  𝑊  | 
						
						
							| 312 | 
							
								311
							 | 
							releldmi | 
							⊢ ( ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑊 ( ( 𝑊 ‘ 𝑋 )  ∪  ( 𝑋  ×  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) )  →  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∈  dom  𝑊 )  | 
						
						
							| 313 | 
							
								
							 | 
							elssuni | 
							⊢ ( ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ∈  dom  𝑊  →  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ⊆  ∪  dom  𝑊 )  | 
						
						
							| 314 | 
							
								310 312 313
							 | 
							3syl | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ⊆  ∪  dom  𝑊 )  | 
						
						
							| 315 | 
							
								314 4
							 | 
							sseqtrrdi | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( 𝑋  ∪  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } )  ⊆  𝑋 )  | 
						
						
							| 316 | 
							
								5 315
							 | 
							sstrid | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ⊆  𝑋 )  | 
						
						
							| 317 | 
							
								46
							 | 
							snss | 
							⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋  ↔  { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) }  ⊆  𝑋 )  | 
						
						
							| 318 | 
							
								316 317
							 | 
							sylibr | 
							⊢ ( ( 𝜑  ∧  ¬  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  →  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  | 
						
						
							| 319 | 
							
								318
							 | 
							pm2.18da | 
							⊢ ( 𝜑  →  ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) )  ∈  𝑋 )  |