Step |
Hyp |
Ref |
Expression |
1 |
|
fpwwe2.1 |
⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } |
2 |
|
fpwwe2.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
fpwwe2.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
4 |
|
fpwwe2.4 |
⊢ 𝑋 = ∪ dom 𝑊 |
5 |
|
ssun2 |
⊢ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → 𝐴 ∈ 𝑉 ) |
7 |
3
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
8 |
1 6 7 4
|
fpwwe2lem11 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → 𝑋 ∈ dom 𝑊 ) |
9 |
1 6 7 4
|
fpwwe2lem10 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → 𝑊 : dom 𝑊 ⟶ 𝒫 ( 𝑋 × 𝑋 ) ) |
10 |
|
ffun |
⊢ ( 𝑊 : dom 𝑊 ⟶ 𝒫 ( 𝑋 × 𝑋 ) → Fun 𝑊 ) |
11 |
|
funfvbrb |
⊢ ( Fun 𝑊 → ( 𝑋 ∈ dom 𝑊 ↔ 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) ) |
12 |
9 10 11
|
3syl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 ∈ dom 𝑊 ↔ 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) ) |
13 |
8 12
|
mpbid |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ) |
14 |
1 6
|
fpwwe2lem2 |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 𝑊 ( 𝑊 ‘ 𝑋 ) ↔ ( ( 𝑋 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( ( 𝑊 ‘ 𝑋 ) We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
15 |
13 14
|
mpbid |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑋 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( ( 𝑊 ‘ 𝑋 ) We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
16 |
15
|
simpld |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) ) |
17 |
16
|
simpld |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → 𝑋 ⊆ 𝐴 ) |
18 |
16
|
simprd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) |
19 |
15
|
simprd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑊 ‘ 𝑋 ) We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
20 |
19
|
simpld |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑊 ‘ 𝑋 ) We 𝑋 ) |
21 |
17 18 20
|
3jca |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ∧ ( 𝑊 ‘ 𝑋 ) We 𝑋 ) ) |
22 |
1 2 3
|
fpwwe2lem4 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ∧ ( 𝑊 ‘ 𝑋 ) We 𝑋 ) ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝐴 ) |
23 |
21 22
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝐴 ) |
24 |
23
|
snssd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ⊆ 𝐴 ) |
25 |
17 24
|
unssd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ 𝐴 ) |
26 |
|
ssun1 |
⊢ 𝑋 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
27 |
|
xpss12 |
⊢ ( ( 𝑋 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑋 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑋 × 𝑋 ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) |
28 |
26 26 27
|
mp2an |
⊢ ( 𝑋 × 𝑋 ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
29 |
18 28
|
sstrdi |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑊 ‘ 𝑋 ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) |
30 |
|
xpss12 |
⊢ ( ( 𝑋 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) |
31 |
26 5 30
|
mp2an |
⊢ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
32 |
31
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) |
33 |
29 32
|
unssd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) |
34 |
25 33
|
jca |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ 𝐴 ∧ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) ) |
35 |
|
ssdif0 |
⊢ ( 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ↔ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ∅ ) |
36 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |
37 |
18
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) |
38 |
37
|
ssbrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ) |
39 |
|
brxp |
⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ↔ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ∧ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ) |
40 |
39
|
simplbi |
⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |
41 |
38 40
|
syl6 |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ) |
42 |
36 41
|
mtod |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) |
43 |
|
brxp |
⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ↔ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ∧ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
44 |
43
|
simplbi |
⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |
45 |
36 44
|
nsyl |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) |
46 |
|
ovex |
⊢ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ V |
47 |
|
breq2 |
⊢ ( 𝑦 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ) |
48 |
|
brun |
⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ↔ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ) |
49 |
47 48
|
bitrdi |
⊢ ( 𝑦 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ) ) |
50 |
49
|
notbid |
⊢ ( 𝑦 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ¬ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ) ) |
51 |
46 50
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ¬ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ) |
52 |
|
ioran |
⊢ ( ¬ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ↔ ( ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ) |
53 |
51 52
|
bitri |
⊢ ( ∃ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ( ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) ) |
54 |
42 45 53
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ∃ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
55 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
56 |
|
sssn |
⊢ ( 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ↔ ( 𝑥 = ∅ ∨ 𝑥 = { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
57 |
55 56
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑥 = ∅ ∨ 𝑥 = { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
58 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → 𝑥 ≠ ∅ ) |
59 |
58
|
neneqd |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ¬ 𝑥 = ∅ ) |
60 |
57 59
|
orcnd |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → 𝑥 = { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
61 |
60
|
raleqdv |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ∀ 𝑧 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
62 |
|
breq1 |
⊢ ( 𝑧 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
63 |
62
|
notbid |
⊢ ( 𝑧 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
64 |
46 63
|
ralsn |
⊢ ( ∀ 𝑧 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
65 |
61 64
|
bitrdi |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
66 |
60 65
|
rexeqbidv |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ∃ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
67 |
54 66
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
68 |
67
|
ex |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) → ( 𝑥 ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
69 |
35 68
|
syl5bir |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) → ( ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ∅ → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
70 |
|
vex |
⊢ 𝑥 ∈ V |
71 |
|
difexg |
⊢ ( 𝑥 ∈ V → ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∈ V ) |
72 |
70 71
|
mp1i |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∈ V ) |
73 |
|
wefr |
⊢ ( ( 𝑊 ‘ 𝑋 ) We 𝑋 → ( 𝑊 ‘ 𝑋 ) Fr 𝑋 ) |
74 |
20 73
|
syl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑊 ‘ 𝑋 ) Fr 𝑋 ) |
75 |
74
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → ( 𝑊 ‘ 𝑋 ) Fr 𝑋 ) |
76 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
77 |
|
uncom |
⊢ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∪ 𝑋 ) |
78 |
76 77
|
sseqtrdi |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → 𝑥 ⊆ ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∪ 𝑋 ) ) |
79 |
|
ssundif |
⊢ ( 𝑥 ⊆ ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∪ 𝑋 ) ↔ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ 𝑋 ) |
80 |
78 79
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ 𝑋 ) |
81 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) |
82 |
|
fri |
⊢ ( ( ( ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∈ V ∧ ( 𝑊 ‘ 𝑋 ) Fr 𝑋 ) ∧ ( ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ 𝑋 ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ) → ∃ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) |
83 |
72 75 80 81 82
|
syl22anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → ∃ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) |
84 |
|
brun |
⊢ ( 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ) |
85 |
|
idd |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 → 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) |
86 |
|
brxp |
⊢ ( 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ↔ ( 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
87 |
86
|
simprbi |
⊢ ( 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 → 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
88 |
|
eldifn |
⊢ ( 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ¬ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
89 |
88
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ¬ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
90 |
89
|
pm2.21d |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } → 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) |
91 |
87 90
|
syl5 |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 → 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) |
92 |
85 91
|
jaod |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) → 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) |
93 |
84 92
|
syl5bi |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 → 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) |
94 |
93
|
con3d |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 → ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
95 |
94
|
ralimdv |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 → ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
96 |
|
simpr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |
97 |
96
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |
98 |
18
|
ad3antrrr |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) |
99 |
98
|
ssbrd |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × 𝑋 ) 𝑦 ) ) |
100 |
|
brxp |
⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × 𝑋 ) 𝑦 ↔ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
101 |
100
|
simplbi |
⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × 𝑋 ) 𝑦 → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |
102 |
99 101
|
syl6 |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ) |
103 |
97 102
|
mtod |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 ) |
104 |
|
brxp |
⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ↔ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
105 |
104
|
simprbi |
⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 → 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
106 |
89 105
|
nsyl |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) |
107 |
|
brun |
⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ) |
108 |
62 107
|
bitrdi |
⊢ ( 𝑧 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ) ) |
109 |
108
|
notbid |
⊢ ( 𝑧 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ( ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ¬ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ) ) |
110 |
46 109
|
ralsn |
⊢ ( ∀ 𝑧 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ¬ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ) |
111 |
|
ioran |
⊢ ( ¬ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ↔ ( ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ) |
112 |
110 111
|
bitri |
⊢ ( ∀ 𝑧 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ ( ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑊 ‘ 𝑋 ) 𝑦 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ) |
113 |
103 106 112
|
sylanbrc |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ∀ 𝑧 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
114 |
95 113
|
jctird |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 → ( ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∧ ∀ 𝑧 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) ) |
115 |
|
ssun1 |
⊢ 𝑥 ⊆ ( 𝑥 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
116 |
|
undif1 |
⊢ ( ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ( 𝑥 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
117 |
115 116
|
sseqtrri |
⊢ 𝑥 ⊆ ( ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
118 |
|
ralun |
⊢ ( ( ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∧ ∀ 𝑧 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) → ∀ 𝑧 ∈ ( ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
119 |
|
ssralv |
⊢ ( 𝑥 ⊆ ( ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ∀ 𝑧 ∈ ( ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 → ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
120 |
117 118 119
|
mpsyl |
⊢ ( ( ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∧ ∀ 𝑧 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) → ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
121 |
114 120
|
syl6 |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 → ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
122 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → 𝑦 ∈ 𝑥 ) |
123 |
122
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → 𝑦 ∈ 𝑥 ) |
124 |
121 123
|
jctild |
⊢ ( ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) ∧ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 → ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) ) |
125 |
124
|
expimpd |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → ( ( 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) → ( 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) ) |
126 |
125
|
reximdv2 |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → ( ∃ 𝑦 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∀ 𝑧 ∈ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ¬ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
127 |
83 126
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) ∧ ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
128 |
127
|
ex |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) → ( ( 𝑥 ∖ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ≠ ∅ → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
129 |
69 128
|
pm2.61dne |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
130 |
129
|
ex |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
131 |
130
|
alrimiv |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ∀ 𝑥 ( ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
132 |
|
df-fr |
⊢ ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) Fr ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ↔ ∀ 𝑥 ( ( 𝑥 ⊆ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ∀ 𝑧 ∈ 𝑥 ¬ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
133 |
131 132
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) Fr ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
134 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ↔ ( 𝑥 ∈ 𝑋 ∨ 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
135 |
|
elun |
⊢ ( 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ↔ ( 𝑦 ∈ 𝑋 ∨ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
136 |
134 135
|
anbi12i |
⊢ ( ( 𝑥 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ↔ ( ( 𝑥 ∈ 𝑋 ∨ 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ ( 𝑦 ∈ 𝑋 ∨ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) |
137 |
|
weso |
⊢ ( ( 𝑊 ‘ 𝑋 ) We 𝑋 → ( 𝑊 ‘ 𝑋 ) Or 𝑋 ) |
138 |
20 137
|
syl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑊 ‘ 𝑋 ) Or 𝑋 ) |
139 |
|
solin |
⊢ ( ( ( 𝑊 ‘ 𝑋 ) Or 𝑋 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( 𝑊 ‘ 𝑋 ) 𝑥 ) ) |
140 |
138 139
|
sylan |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( 𝑊 ‘ 𝑋 ) 𝑥 ) ) |
141 |
|
ssun1 |
⊢ ( 𝑊 ‘ 𝑋 ) ⊆ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
142 |
141
|
a1i |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑊 ‘ 𝑋 ) ⊆ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) |
143 |
142
|
ssbrd |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( 𝑊 ‘ 𝑋 ) 𝑦 → 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
144 |
|
idd |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) ) |
145 |
142
|
ssbrd |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑦 ( 𝑊 ‘ 𝑋 ) 𝑥 → 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) |
146 |
143 144 145
|
3orim123d |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( ( 𝑥 ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( 𝑊 ‘ 𝑋 ) 𝑥 ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) ) |
147 |
140 146
|
mpd |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) |
148 |
147
|
ex |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) ) |
149 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∧ 𝑦 ∈ 𝑋 ) ) |
150 |
149
|
ancomd |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
151 |
|
brxp |
⊢ ( 𝑦 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑥 ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
152 |
150 151
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∧ 𝑦 ∈ 𝑋 ) ) → 𝑦 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑥 ) |
153 |
|
ssun2 |
⊢ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
154 |
153
|
ssbri |
⊢ ( 𝑦 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑥 → 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) |
155 |
|
3mix3 |
⊢ ( 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) |
156 |
152 154 155
|
3syl |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) |
157 |
156
|
ex |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) ) |
158 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
159 |
|
brxp |
⊢ ( 𝑥 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
160 |
158 159
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → 𝑥 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) |
161 |
153
|
ssbri |
⊢ ( 𝑥 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 → 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
162 |
|
3mix1 |
⊢ ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) |
163 |
160 161 162
|
3syl |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) |
164 |
163
|
ex |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) ) |
165 |
|
elsni |
⊢ ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } → 𝑥 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) |
166 |
|
elsni |
⊢ ( 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } → 𝑦 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) |
167 |
|
eqtr3 |
⊢ ( ( 𝑥 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∧ 𝑦 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) → 𝑥 = 𝑦 ) |
168 |
165 166 167
|
syl2an |
⊢ ( ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → 𝑥 = 𝑦 ) |
169 |
168
|
3mix2d |
⊢ ( ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) |
170 |
169
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) ) |
171 |
148 157 164 170
|
ccased |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( ( 𝑥 ∈ 𝑋 ∨ 𝑥 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ ( 𝑦 ∈ 𝑋 ∨ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) ) |
172 |
136 171
|
syl5bi |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑥 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) ) |
173 |
172
|
ralrimivv |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ∀ 𝑥 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∀ 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) |
174 |
|
dfwe2 |
⊢ ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) We ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ↔ ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) Fr ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ ∀ 𝑥 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∀ 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ( 𝑥 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑥 ) ) ) |
175 |
133 173 174
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) We ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
176 |
1
|
fpwwe2cbv |
⊢ 𝑊 = { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 [ ( ◡ 𝑠 “ { 𝑧 } ) / 𝑏 ] ( 𝑏 𝐹 ( 𝑠 ∩ ( 𝑏 × 𝑏 ) ) ) = 𝑧 ) ) } |
177 |
176 6 13
|
fpwwe2lem3 |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) = 𝑦 ) |
178 |
|
cnvimass |
⊢ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ⊆ dom ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
179 |
|
fvex |
⊢ ( 𝑊 ‘ 𝑋 ) ∈ V |
180 |
|
snex |
⊢ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∈ V |
181 |
|
xpexg |
⊢ ( ( 𝑋 ∈ dom 𝑊 ∧ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∈ V ) → ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∈ V ) |
182 |
8 180 181
|
sylancl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∈ V ) |
183 |
|
unexg |
⊢ ( ( ( 𝑊 ‘ 𝑋 ) ∈ V ∧ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∈ V ) → ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∈ V ) |
184 |
179 182 183
|
sylancr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∈ V ) |
185 |
184
|
dmexd |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → dom ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∈ V ) |
186 |
|
ssexg |
⊢ ( ( ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ⊆ dom ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∧ dom ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∈ V ) → ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ∈ V ) |
187 |
178 185 186
|
sylancr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ∈ V ) |
188 |
187
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ∈ V ) |
189 |
|
id |
⊢ ( 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) → 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) |
190 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ∈ 𝑋 ) |
191 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |
192 |
|
nelne2 |
⊢ ( ( 𝑦 ∈ 𝑋 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → 𝑦 ≠ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) |
193 |
190 191 192
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → 𝑦 ≠ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) |
194 |
87 166
|
syl |
⊢ ( 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 → 𝑦 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) |
195 |
194
|
necon3ai |
⊢ ( 𝑦 ≠ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) → ¬ 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) |
196 |
|
biorf |
⊢ ( ¬ 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 → ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ↔ ( 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ∨ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) ) |
197 |
193 195 196
|
3syl |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ↔ ( 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ∨ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) ) |
198 |
|
orcom |
⊢ ( ( 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ∨ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ↔ ( 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ∨ 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ) ) |
199 |
198 84
|
bitr4i |
⊢ ( ( 𝑧 ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑦 ∨ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ↔ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
200 |
197 199
|
bitr2di |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ↔ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) |
201 |
|
vex |
⊢ 𝑧 ∈ V |
202 |
201
|
eliniseg |
⊢ ( 𝑦 ∈ V → ( 𝑧 ∈ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ↔ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) ) |
203 |
202
|
elv |
⊢ ( 𝑧 ∈ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ↔ 𝑧 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) 𝑦 ) |
204 |
201
|
eliniseg |
⊢ ( 𝑦 ∈ V → ( 𝑧 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ↔ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) ) |
205 |
204
|
elv |
⊢ ( 𝑧 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ↔ 𝑧 ( 𝑊 ‘ 𝑋 ) 𝑦 ) |
206 |
200 203 205
|
3bitr4g |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑧 ∈ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ↔ 𝑧 ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) |
207 |
206
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) = ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) |
208 |
189 207
|
sylan9eqr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → 𝑢 = ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) |
209 |
208
|
sqxpeqd |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( 𝑢 × 𝑢 ) = ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) |
210 |
209
|
ineq2d |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) = ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) |
211 |
|
indir |
⊢ ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) = ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ∪ ( ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) |
212 |
|
inxp |
⊢ ( ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) = ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) × ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) |
213 |
|
incom |
⊢ ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) = ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ∩ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
214 |
|
cnvimass |
⊢ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ⊆ dom ( 𝑊 ‘ 𝑋 ) |
215 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) |
216 |
|
dmss |
⊢ ( ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) → dom ( 𝑊 ‘ 𝑋 ) ⊆ dom ( 𝑋 × 𝑋 ) ) |
217 |
215 216
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → dom ( 𝑊 ‘ 𝑋 ) ⊆ dom ( 𝑋 × 𝑋 ) ) |
218 |
|
dmxpid |
⊢ dom ( 𝑋 × 𝑋 ) = 𝑋 |
219 |
217 218
|
sseqtrdi |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → dom ( 𝑊 ‘ 𝑋 ) ⊆ 𝑋 ) |
220 |
214 219
|
sstrid |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ⊆ 𝑋 ) |
221 |
220 191
|
ssneldd |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) |
222 |
|
disjsn |
⊢ ( ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ∩ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ∅ ↔ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) |
223 |
221 222
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ∩ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ∅ ) |
224 |
213 223
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) = ∅ ) |
225 |
224
|
xpeq2d |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) × ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) = ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) × ∅ ) ) |
226 |
|
xp0 |
⊢ ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) × ∅ ) = ∅ |
227 |
225 226
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑋 ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) × ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∩ ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) = ∅ ) |
228 |
212 227
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) = ∅ ) |
229 |
228
|
uneq2d |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ∪ ( ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) = ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ∪ ∅ ) ) |
230 |
211 229
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) = ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ∪ ∅ ) ) |
231 |
|
un0 |
⊢ ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ∪ ∅ ) = ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) |
232 |
230 231
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) = ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) |
233 |
232
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) = ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) |
234 |
210 233
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) = ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) |
235 |
208 234
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) ) |
236 |
235
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) = 𝑦 ) ) |
237 |
188 236
|
sbcied |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) 𝐹 ( ( 𝑊 ‘ 𝑋 ) ∩ ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) × ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ) ) ) = 𝑦 ) ) |
238 |
177 237
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) |
239 |
166
|
adantl |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → 𝑦 = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) |
240 |
239
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) = 𝑦 ) |
241 |
187
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ∈ V ) |
242 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |
243 |
239
|
eleq1d |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑦 ∈ dom ◡ ( 𝑊 ‘ 𝑋 ) ↔ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ dom ◡ ( 𝑊 ‘ 𝑋 ) ) ) |
244 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ) |
245 |
|
rnss |
⊢ ( ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) → ran ( 𝑊 ‘ 𝑋 ) ⊆ ran ( 𝑋 × 𝑋 ) ) |
246 |
244 245
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ran ( 𝑊 ‘ 𝑋 ) ⊆ ran ( 𝑋 × 𝑋 ) ) |
247 |
|
df-rn |
⊢ ran ( 𝑊 ‘ 𝑋 ) = dom ◡ ( 𝑊 ‘ 𝑋 ) |
248 |
|
rnxpid |
⊢ ran ( 𝑋 × 𝑋 ) = 𝑋 |
249 |
246 247 248
|
3sstr3g |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → dom ◡ ( 𝑊 ‘ 𝑋 ) ⊆ 𝑋 ) |
250 |
249
|
sseld |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ dom ◡ ( 𝑊 ‘ 𝑋 ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ) |
251 |
243 250
|
sylbid |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑦 ∈ dom ◡ ( 𝑊 ‘ 𝑋 ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ) |
252 |
242 251
|
mtod |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ¬ 𝑦 ∈ dom ◡ ( 𝑊 ‘ 𝑋 ) ) |
253 |
|
ndmima |
⊢ ( ¬ 𝑦 ∈ dom ◡ ( 𝑊 ‘ 𝑋 ) → ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) = ∅ ) |
254 |
252 253
|
syl |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) = ∅ ) |
255 |
239
|
sneqd |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → { 𝑦 } = { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
256 |
255
|
imaeq2d |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) “ { 𝑦 } ) = ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) “ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
257 |
|
df-ima |
⊢ ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) “ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ran ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ↾ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
258 |
|
cnvxp |
⊢ ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) |
259 |
258
|
reseq1i |
⊢ ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ↾ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ( ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) ↾ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
260 |
|
ssid |
⊢ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } |
261 |
|
xpssres |
⊢ ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ⊆ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } → ( ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) ↾ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) ) |
262 |
260 261
|
ax-mp |
⊢ ( ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) ↾ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) |
263 |
259 262
|
eqtri |
⊢ ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ↾ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) |
264 |
263
|
rneqi |
⊢ ran ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ↾ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ran ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) |
265 |
46
|
snnz |
⊢ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ≠ ∅ |
266 |
|
rnxp |
⊢ ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ≠ ∅ → ran ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) = 𝑋 ) |
267 |
265 266
|
ax-mp |
⊢ ran ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } × 𝑋 ) = 𝑋 |
268 |
264 267
|
eqtri |
⊢ ran ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ↾ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = 𝑋 |
269 |
257 268
|
eqtri |
⊢ ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) “ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = 𝑋 |
270 |
256 269
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) “ { 𝑦 } ) = 𝑋 ) |
271 |
254 270
|
uneq12d |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ∪ ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) “ { 𝑦 } ) ) = ( ∅ ∪ 𝑋 ) ) |
272 |
|
cnvun |
⊢ ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) = ( ◡ ( 𝑊 ‘ 𝑋 ) ∪ ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) |
273 |
272
|
imaeq1i |
⊢ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) = ( ( ◡ ( 𝑊 ‘ 𝑋 ) ∪ ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) |
274 |
|
imaundir |
⊢ ( ( ◡ ( 𝑊 ‘ 𝑋 ) ∪ ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) = ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ∪ ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) “ { 𝑦 } ) ) |
275 |
273 274
|
eqtri |
⊢ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) = ( ( ◡ ( 𝑊 ‘ 𝑋 ) “ { 𝑦 } ) ∪ ( ◡ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) “ { 𝑦 } ) ) |
276 |
|
un0 |
⊢ ( 𝑋 ∪ ∅ ) = 𝑋 |
277 |
|
uncom |
⊢ ( 𝑋 ∪ ∅ ) = ( ∅ ∪ 𝑋 ) |
278 |
276 277
|
eqtr3i |
⊢ 𝑋 = ( ∅ ∪ 𝑋 ) |
279 |
271 275 278
|
3eqtr4g |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) = 𝑋 ) |
280 |
189 279
|
sylan9eqr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → 𝑢 = 𝑋 ) |
281 |
280
|
sqxpeqd |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( 𝑢 × 𝑢 ) = ( 𝑋 × 𝑋 ) ) |
282 |
281
|
ineq2d |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) = ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑋 × 𝑋 ) ) ) |
283 |
|
indir |
⊢ ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑋 × 𝑋 ) ) = ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑋 ) ) ∪ ( ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∩ ( 𝑋 × 𝑋 ) ) ) |
284 |
|
df-ss |
⊢ ( ( 𝑊 ‘ 𝑋 ) ⊆ ( 𝑋 × 𝑋 ) ↔ ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑋 ) ) = ( 𝑊 ‘ 𝑋 ) ) |
285 |
244 284
|
sylib |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑋 ) ) = ( 𝑊 ‘ 𝑋 ) ) |
286 |
|
incom |
⊢ ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∩ 𝑋 ) = ( 𝑋 ∩ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) |
287 |
|
disjsn |
⊢ ( ( 𝑋 ∩ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ∅ ↔ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |
288 |
242 287
|
sylibr |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑋 ∩ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) = ∅ ) |
289 |
286 288
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∩ 𝑋 ) = ∅ ) |
290 |
289
|
xpeq2d |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( 𝑋 × ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∩ 𝑋 ) ) = ( 𝑋 × ∅ ) ) |
291 |
|
xpindi |
⊢ ( 𝑋 × ( { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ∩ 𝑋 ) ) = ( ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∩ ( 𝑋 × 𝑋 ) ) |
292 |
|
xp0 |
⊢ ( 𝑋 × ∅ ) = ∅ |
293 |
290 291 292
|
3eqtr3g |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∩ ( 𝑋 × 𝑋 ) ) = ∅ ) |
294 |
285 293
|
uneq12d |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ( ( 𝑊 ‘ 𝑋 ) ∩ ( 𝑋 × 𝑋 ) ) ∪ ( ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∩ ( 𝑋 × 𝑋 ) ) ) = ( ( 𝑊 ‘ 𝑋 ) ∪ ∅ ) ) |
295 |
283 294
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑋 × 𝑋 ) ) = ( ( 𝑊 ‘ 𝑋 ) ∪ ∅ ) ) |
296 |
|
un0 |
⊢ ( ( 𝑊 ‘ 𝑋 ) ∪ ∅ ) = ( 𝑊 ‘ 𝑋 ) |
297 |
295 296
|
eqtrdi |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑋 × 𝑋 ) ) = ( 𝑊 ‘ 𝑋 ) ) |
298 |
297
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑋 × 𝑋 ) ) = ( 𝑊 ‘ 𝑋 ) ) |
299 |
282 298
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) = ( 𝑊 ‘ 𝑋 ) ) |
300 |
280 299
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ) |
301 |
300
|
eqeq1d |
⊢ ( ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ 𝑢 = ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) ) → ( ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) = 𝑦 ) ) |
302 |
241 301
|
sbcied |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → ( [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) = 𝑦 ) ) |
303 |
240 302
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) → [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) |
304 |
238 303
|
jaodan |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∨ 𝑦 ∈ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) |
305 |
135 304
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) ∧ 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) |
306 |
305
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ∀ 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) |
307 |
175 306
|
jca |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) We ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ ∀ 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) |
308 |
1 2
|
fpwwe2lem2 |
⊢ ( 𝜑 → ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑊 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ↔ ( ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ 𝐴 ∧ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) ∧ ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) We ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ ∀ 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
309 |
308
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑊 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ↔ ( ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ 𝐴 ∧ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ⊆ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) × ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) ∧ ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) We ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∧ ∀ 𝑦 ∈ ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) [ ( ◡ ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
310 |
34 307 309
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑊 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) ) |
311 |
1
|
relopabiv |
⊢ Rel 𝑊 |
312 |
311
|
releldmi |
⊢ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) 𝑊 ( ( 𝑊 ‘ 𝑋 ) ∪ ( 𝑋 × { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ) → ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∈ dom 𝑊 ) |
313 |
|
elssuni |
⊢ ( ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ∈ dom 𝑊 → ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ ∪ dom 𝑊 ) |
314 |
310 312 313
|
3syl |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ ∪ dom 𝑊 ) |
315 |
314 4
|
sseqtrrdi |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 ∪ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ) ⊆ 𝑋 ) |
316 |
5 315
|
sstrid |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ⊆ 𝑋 ) |
317 |
46
|
snss |
⊢ ( ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ↔ { ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) } ⊆ 𝑋 ) |
318 |
316 317
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |
319 |
318
|
pm2.18da |
⊢ ( 𝜑 → ( 𝑋 𝐹 ( 𝑊 ‘ 𝑋 ) ) ∈ 𝑋 ) |