Step |
Hyp |
Ref |
Expression |
1 |
|
fpwwe2.1 |
⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } |
2 |
|
fpwwe2.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
fpwwe2lem3.4 |
⊢ ( 𝜑 → 𝑋 𝑊 𝑅 ) |
4 |
1 2
|
fpwwe2lem2 |
⊢ ( 𝜑 → ( 𝑋 𝑊 𝑅 ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
5 |
3 4
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
6 |
5
|
simprrd |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑋 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) |
7 |
|
sneq |
⊢ ( 𝑦 = 𝐵 → { 𝑦 } = { 𝐵 } ) |
8 |
7
|
imaeq2d |
⊢ ( 𝑦 = 𝐵 → ( ◡ 𝑅 “ { 𝑦 } ) = ( ◡ 𝑅 “ { 𝐵 } ) ) |
9 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝐵 ) ) |
10 |
8 9
|
sbceqbid |
⊢ ( 𝑦 = 𝐵 → ( [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ↔ [ ( ◡ 𝑅 “ { 𝐵 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝐵 ) ) |
11 |
10
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ 𝑋 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ∧ 𝐵 ∈ 𝑋 ) → [ ( ◡ 𝑅 “ { 𝐵 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝐵 ) |
12 |
6 11
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑋 ) → [ ( ◡ 𝑅 “ { 𝐵 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝐵 ) |
13 |
|
cnvimass |
⊢ ( ◡ 𝑅 “ { 𝐵 } ) ⊆ dom 𝑅 |
14 |
1
|
relopabiv |
⊢ Rel 𝑊 |
15 |
14
|
brrelex2i |
⊢ ( 𝑋 𝑊 𝑅 → 𝑅 ∈ V ) |
16 |
|
dmexg |
⊢ ( 𝑅 ∈ V → dom 𝑅 ∈ V ) |
17 |
3 15 16
|
3syl |
⊢ ( 𝜑 → dom 𝑅 ∈ V ) |
18 |
|
ssexg |
⊢ ( ( ( ◡ 𝑅 “ { 𝐵 } ) ⊆ dom 𝑅 ∧ dom 𝑅 ∈ V ) → ( ◡ 𝑅 “ { 𝐵 } ) ∈ V ) |
19 |
13 17 18
|
sylancr |
⊢ ( 𝜑 → ( ◡ 𝑅 “ { 𝐵 } ) ∈ V ) |
20 |
|
id |
⊢ ( 𝑢 = ( ◡ 𝑅 “ { 𝐵 } ) → 𝑢 = ( ◡ 𝑅 “ { 𝐵 } ) ) |
21 |
20
|
sqxpeqd |
⊢ ( 𝑢 = ( ◡ 𝑅 “ { 𝐵 } ) → ( 𝑢 × 𝑢 ) = ( ( ◡ 𝑅 “ { 𝐵 } ) × ( ◡ 𝑅 “ { 𝐵 } ) ) ) |
22 |
21
|
ineq2d |
⊢ ( 𝑢 = ( ◡ 𝑅 “ { 𝐵 } ) → ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) = ( 𝑅 ∩ ( ( ◡ 𝑅 “ { 𝐵 } ) × ( ◡ 𝑅 “ { 𝐵 } ) ) ) ) |
23 |
20 22
|
oveq12d |
⊢ ( 𝑢 = ( ◡ 𝑅 “ { 𝐵 } ) → ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = ( ( ◡ 𝑅 “ { 𝐵 } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { 𝐵 } ) × ( ◡ 𝑅 “ { 𝐵 } ) ) ) ) ) |
24 |
23
|
eqeq1d |
⊢ ( 𝑢 = ( ◡ 𝑅 “ { 𝐵 } ) → ( ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝐵 ↔ ( ( ◡ 𝑅 “ { 𝐵 } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { 𝐵 } ) × ( ◡ 𝑅 “ { 𝐵 } ) ) ) ) = 𝐵 ) ) |
25 |
24
|
sbcieg |
⊢ ( ( ◡ 𝑅 “ { 𝐵 } ) ∈ V → ( [ ( ◡ 𝑅 “ { 𝐵 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝐵 ↔ ( ( ◡ 𝑅 “ { 𝐵 } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { 𝐵 } ) × ( ◡ 𝑅 “ { 𝐵 } ) ) ) ) = 𝐵 ) ) |
26 |
19 25
|
syl |
⊢ ( 𝜑 → ( [ ( ◡ 𝑅 “ { 𝐵 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝐵 ↔ ( ( ◡ 𝑅 “ { 𝐵 } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { 𝐵 } ) × ( ◡ 𝑅 “ { 𝐵 } ) ) ) ) = 𝐵 ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑋 ) → ( [ ( ◡ 𝑅 “ { 𝐵 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝐵 ↔ ( ( ◡ 𝑅 “ { 𝐵 } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { 𝐵 } ) × ( ◡ 𝑅 “ { 𝐵 } ) ) ) ) = 𝐵 ) ) |
28 |
12 27
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑋 ) → ( ( ◡ 𝑅 “ { 𝐵 } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { 𝐵 } ) × ( ◡ 𝑅 “ { 𝐵 } ) ) ) ) = 𝐵 ) |