Step |
Hyp |
Ref |
Expression |
1 |
|
fpwwe2.1 |
⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } |
2 |
|
fpwwe2.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
fpwwe2.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
4 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → 𝐴 ∈ 𝑉 ) |
5 |
|
simpr1 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → 𝑋 ⊆ 𝐴 ) |
6 |
4 5
|
ssexd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → 𝑋 ∈ V ) |
7 |
6 6
|
xpexd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → ( 𝑋 × 𝑋 ) ∈ V ) |
8 |
|
simpr2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) |
9 |
7 8
|
ssexd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → 𝑅 ∈ V ) |
10 |
6 9
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → ( 𝑋 ∈ V ∧ 𝑅 ∈ V ) ) |
11 |
|
sseq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴 ) ) |
12 |
|
xpeq12 |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑥 = 𝑋 ) → ( 𝑥 × 𝑥 ) = ( 𝑋 × 𝑋 ) ) |
13 |
12
|
anidms |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 × 𝑥 ) = ( 𝑋 × 𝑋 ) ) |
14 |
13
|
sseq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ 𝑟 ⊆ ( 𝑋 × 𝑋 ) ) ) |
15 |
|
weeq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑟 We 𝑥 ↔ 𝑟 We 𝑋 ) ) |
16 |
11 14 15
|
3anbi123d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ↔ ( 𝑋 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑟 We 𝑋 ) ) ) |
17 |
16
|
anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) ↔ ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑟 We 𝑋 ) ) ) ) |
18 |
|
oveq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 𝐹 𝑟 ) = ( 𝑋 𝐹 𝑟 ) ) |
19 |
18
|
eleq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ↔ ( 𝑋 𝐹 𝑟 ) ∈ 𝐴 ) ) |
20 |
17 19
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑟 We 𝑋 ) ) → ( 𝑋 𝐹 𝑟 ) ∈ 𝐴 ) ) ) |
21 |
|
sseq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ⊆ ( 𝑋 × 𝑋 ) ↔ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ) |
22 |
|
weeq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 We 𝑋 ↔ 𝑅 We 𝑋 ) ) |
23 |
21 22
|
3anbi23d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑋 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑟 We 𝑋 ) ↔ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) ) |
24 |
23
|
anbi2d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑟 We 𝑋 ) ) ↔ ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) ) ) |
25 |
|
oveq2 |
⊢ ( 𝑟 = 𝑅 → ( 𝑋 𝐹 𝑟 ) = ( 𝑋 𝐹 𝑅 ) ) |
26 |
25
|
eleq1d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑋 𝐹 𝑟 ) ∈ 𝐴 ↔ ( 𝑋 𝐹 𝑅 ) ∈ 𝐴 ) ) |
27 |
24 26
|
imbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑟 We 𝑋 ) ) → ( 𝑋 𝐹 𝑟 ) ∈ 𝐴 ) ↔ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → ( 𝑋 𝐹 𝑅 ) ∈ 𝐴 ) ) ) |
28 |
20 27 3
|
vtocl2g |
⊢ ( ( 𝑋 ∈ V ∧ 𝑅 ∈ V ) → ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → ( 𝑋 𝐹 𝑅 ) ∈ 𝐴 ) ) |
29 |
10 28
|
mpcom |
⊢ ( ( 𝜑 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ∧ 𝑅 We 𝑋 ) ) → ( 𝑋 𝐹 𝑅 ) ∈ 𝐴 ) |