| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fpwwe2.1 |
⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } |
| 2 |
|
fpwwe2.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 3 |
|
fpwwe2.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
| 4 |
|
fpwwe2lem8.x |
⊢ ( 𝜑 → 𝑋 𝑊 𝑅 ) |
| 5 |
|
fpwwe2lem8.y |
⊢ ( 𝜑 → 𝑌 𝑊 𝑆 ) |
| 6 |
|
fpwwe2lem8.m |
⊢ 𝑀 = OrdIso ( 𝑅 , 𝑋 ) |
| 7 |
|
fpwwe2lem8.n |
⊢ 𝑁 = OrdIso ( 𝑆 , 𝑌 ) |
| 8 |
|
fpwwe2lem5.1 |
⊢ ( 𝜑 → 𝐵 ∈ dom 𝑀 ) |
| 9 |
|
fpwwe2lem5.2 |
⊢ ( 𝜑 → 𝐵 ∈ dom 𝑁 ) |
| 10 |
|
fpwwe2lem5.3 |
⊢ ( 𝜑 → ( 𝑀 ↾ 𝐵 ) = ( 𝑁 ↾ 𝐵 ) ) |
| 11 |
1
|
relopabiv |
⊢ Rel 𝑊 |
| 12 |
11
|
brrelex1i |
⊢ ( 𝑌 𝑊 𝑆 → 𝑌 ∈ V ) |
| 13 |
5 12
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 14 |
1 2
|
fpwwe2lem2 |
⊢ ( 𝜑 → ( 𝑌 𝑊 𝑆 ↔ ( ( 𝑌 ⊆ 𝐴 ∧ 𝑆 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑆 We 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 [ ( ◡ 𝑆 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑆 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 15 |
5 14
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑌 ⊆ 𝐴 ∧ 𝑆 ⊆ ( 𝑌 × 𝑌 ) ) ∧ ( 𝑆 We 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 [ ( ◡ 𝑆 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑆 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 16 |
15
|
simprld |
⊢ ( 𝜑 → 𝑆 We 𝑌 ) |
| 17 |
7
|
oiiso |
⊢ ( ( 𝑌 ∈ V ∧ 𝑆 We 𝑌 ) → 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ) |
| 18 |
13 16 17
|
syl2anc |
⊢ ( 𝜑 → 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ) |
| 20 |
|
isof1o |
⊢ ( 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) → 𝑁 : dom 𝑁 –1-1-onto→ 𝑌 ) |
| 21 |
19 20
|
syl |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝑁 : dom 𝑁 –1-1-onto→ 𝑌 ) |
| 22 |
1 2 3 4 5 6 7 8 9 10
|
fpwwe2lem5 |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( 𝐶 ∈ 𝑋 ∧ 𝐶 ∈ 𝑌 ∧ ( ◡ 𝑀 ‘ 𝐶 ) = ( ◡ 𝑁 ‘ 𝐶 ) ) ) |
| 23 |
22
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝐶 ∈ 𝑌 ) |
| 24 |
|
f1ocnvfv2 |
⊢ ( ( 𝑁 : dom 𝑁 –1-1-onto→ 𝑌 ∧ 𝐶 ∈ 𝑌 ) → ( 𝑁 ‘ ( ◡ 𝑁 ‘ 𝐶 ) ) = 𝐶 ) |
| 25 |
21 23 24
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( 𝑁 ‘ ( ◡ 𝑁 ‘ 𝐶 ) ) = 𝐶 ) |
| 26 |
22
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( ◡ 𝑀 ‘ 𝐶 ) = ( ◡ 𝑁 ‘ 𝐶 ) ) |
| 27 |
11
|
brrelex1i |
⊢ ( 𝑋 𝑊 𝑅 → 𝑋 ∈ V ) |
| 28 |
4 27
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
| 29 |
1 2
|
fpwwe2lem2 |
⊢ ( 𝜑 → ( 𝑋 𝑊 𝑅 ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) ) |
| 30 |
4 29
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 [ ( ◡ 𝑅 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑅 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) ) |
| 31 |
30
|
simprld |
⊢ ( 𝜑 → 𝑅 We 𝑋 ) |
| 32 |
6
|
oiiso |
⊢ ( ( 𝑋 ∈ V ∧ 𝑅 We 𝑋 ) → 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) ) |
| 33 |
28 31 32
|
syl2anc |
⊢ ( 𝜑 → 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) ) |
| 34 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) ) |
| 35 |
|
isof1o |
⊢ ( 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) → 𝑀 : dom 𝑀 –1-1-onto→ 𝑋 ) |
| 36 |
34 35
|
syl |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝑀 : dom 𝑀 –1-1-onto→ 𝑋 ) |
| 37 |
22
|
simp1d |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝐶 ∈ 𝑋 ) |
| 38 |
|
f1ocnvfv2 |
⊢ ( ( 𝑀 : dom 𝑀 –1-1-onto→ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝐶 ) ) = 𝐶 ) |
| 39 |
36 37 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝐶 ) ) = 𝐶 ) |
| 40 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) |
| 41 |
39 40
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝐶 ) ) 𝑅 ( 𝑀 ‘ 𝐵 ) ) |
| 42 |
|
f1ocnv |
⊢ ( 𝑀 : dom 𝑀 –1-1-onto→ 𝑋 → ◡ 𝑀 : 𝑋 –1-1-onto→ dom 𝑀 ) |
| 43 |
|
f1of |
⊢ ( ◡ 𝑀 : 𝑋 –1-1-onto→ dom 𝑀 → ◡ 𝑀 : 𝑋 ⟶ dom 𝑀 ) |
| 44 |
36 42 43
|
3syl |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ◡ 𝑀 : 𝑋 ⟶ dom 𝑀 ) |
| 45 |
44 37
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( ◡ 𝑀 ‘ 𝐶 ) ∈ dom 𝑀 ) |
| 46 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝐵 ∈ dom 𝑀 ) |
| 47 |
|
isorel |
⊢ ( ( 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) ∧ ( ( ◡ 𝑀 ‘ 𝐶 ) ∈ dom 𝑀 ∧ 𝐵 ∈ dom 𝑀 ) ) → ( ( ◡ 𝑀 ‘ 𝐶 ) E 𝐵 ↔ ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝐶 ) ) 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) |
| 48 |
34 45 46 47
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( ( ◡ 𝑀 ‘ 𝐶 ) E 𝐵 ↔ ( 𝑀 ‘ ( ◡ 𝑀 ‘ 𝐶 ) ) 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) |
| 49 |
41 48
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( ◡ 𝑀 ‘ 𝐶 ) E 𝐵 ) |
| 50 |
26 49
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( ◡ 𝑁 ‘ 𝐶 ) E 𝐵 ) |
| 51 |
|
f1ocnv |
⊢ ( 𝑁 : dom 𝑁 –1-1-onto→ 𝑌 → ◡ 𝑁 : 𝑌 –1-1-onto→ dom 𝑁 ) |
| 52 |
|
f1of |
⊢ ( ◡ 𝑁 : 𝑌 –1-1-onto→ dom 𝑁 → ◡ 𝑁 : 𝑌 ⟶ dom 𝑁 ) |
| 53 |
21 51 52
|
3syl |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ◡ 𝑁 : 𝑌 ⟶ dom 𝑁 ) |
| 54 |
53 23
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( ◡ 𝑁 ‘ 𝐶 ) ∈ dom 𝑁 ) |
| 55 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝐵 ∈ dom 𝑁 ) |
| 56 |
|
isorel |
⊢ ( ( 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ∧ ( ( ◡ 𝑁 ‘ 𝐶 ) ∈ dom 𝑁 ∧ 𝐵 ∈ dom 𝑁 ) ) → ( ( ◡ 𝑁 ‘ 𝐶 ) E 𝐵 ↔ ( 𝑁 ‘ ( ◡ 𝑁 ‘ 𝐶 ) ) 𝑆 ( 𝑁 ‘ 𝐵 ) ) ) |
| 57 |
19 54 55 56
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( ( ◡ 𝑁 ‘ 𝐶 ) E 𝐵 ↔ ( 𝑁 ‘ ( ◡ 𝑁 ‘ 𝐶 ) ) 𝑆 ( 𝑁 ‘ 𝐵 ) ) ) |
| 58 |
50 57
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( 𝑁 ‘ ( ◡ 𝑁 ‘ 𝐶 ) ) 𝑆 ( 𝑁 ‘ 𝐵 ) ) |
| 59 |
25 58
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝐶 𝑆 ( 𝑁 ‘ 𝐵 ) ) |
| 60 |
26
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → ( ◡ 𝑀 ‘ 𝐶 ) = ( ◡ 𝑁 ‘ 𝐶 ) ) |
| 61 |
1 2 3 4 5 6 7 8 9 10
|
fpwwe2lem5 |
⊢ ( ( 𝜑 ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( 𝐷 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌 ∧ ( ◡ 𝑀 ‘ 𝐷 ) = ( ◡ 𝑁 ‘ 𝐷 ) ) ) |
| 62 |
61
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( ◡ 𝑀 ‘ 𝐷 ) = ( ◡ 𝑁 ‘ 𝐷 ) ) |
| 63 |
62
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → ( ◡ 𝑀 ‘ 𝐷 ) = ( ◡ 𝑁 ‘ 𝐷 ) ) |
| 64 |
60 63
|
breq12d |
⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → ( ( ◡ 𝑀 ‘ 𝐶 ) E ( ◡ 𝑀 ‘ 𝐷 ) ↔ ( ◡ 𝑁 ‘ 𝐶 ) E ( ◡ 𝑁 ‘ 𝐷 ) ) ) |
| 65 |
33
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) ) |
| 66 |
|
isocnv |
⊢ ( 𝑀 Isom E , 𝑅 ( dom 𝑀 , 𝑋 ) → ◡ 𝑀 Isom 𝑅 , E ( 𝑋 , dom 𝑀 ) ) |
| 67 |
65 66
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → ◡ 𝑀 Isom 𝑅 , E ( 𝑋 , dom 𝑀 ) ) |
| 68 |
37
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → 𝐶 ∈ 𝑋 ) |
| 69 |
30
|
simplrd |
⊢ ( 𝜑 → 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) |
| 70 |
69
|
ssbrd |
⊢ ( 𝜑 → ( 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) → 𝐷 ( 𝑋 × 𝑋 ) ( 𝑀 ‘ 𝐵 ) ) ) |
| 71 |
70
|
imp |
⊢ ( ( 𝜑 ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝐷 ( 𝑋 × 𝑋 ) ( 𝑀 ‘ 𝐵 ) ) |
| 72 |
|
brxp |
⊢ ( 𝐷 ( 𝑋 × 𝑋 ) ( 𝑀 ‘ 𝐵 ) ↔ ( 𝐷 ∈ 𝑋 ∧ ( 𝑀 ‘ 𝐵 ) ∈ 𝑋 ) ) |
| 73 |
72
|
simplbi |
⊢ ( 𝐷 ( 𝑋 × 𝑋 ) ( 𝑀 ‘ 𝐵 ) → 𝐷 ∈ 𝑋 ) |
| 74 |
71 73
|
syl |
⊢ ( ( 𝜑 ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝐷 ∈ 𝑋 ) |
| 75 |
74
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → 𝐷 ∈ 𝑋 ) |
| 76 |
|
isorel |
⊢ ( ( ◡ 𝑀 Isom 𝑅 , E ( 𝑋 , dom 𝑀 ) ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋 ) ) → ( 𝐶 𝑅 𝐷 ↔ ( ◡ 𝑀 ‘ 𝐶 ) E ( ◡ 𝑀 ‘ 𝐷 ) ) ) |
| 77 |
67 68 75 76
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → ( 𝐶 𝑅 𝐷 ↔ ( ◡ 𝑀 ‘ 𝐶 ) E ( ◡ 𝑀 ‘ 𝐷 ) ) ) |
| 78 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) ) |
| 79 |
|
isocnv |
⊢ ( 𝑁 Isom E , 𝑆 ( dom 𝑁 , 𝑌 ) → ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) ) |
| 80 |
78 79
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) ) |
| 81 |
23
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → 𝐶 ∈ 𝑌 ) |
| 82 |
61
|
simp2d |
⊢ ( ( 𝜑 ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) → 𝐷 ∈ 𝑌 ) |
| 83 |
82
|
adantrl |
⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → 𝐷 ∈ 𝑌 ) |
| 84 |
|
isorel |
⊢ ( ( ◡ 𝑁 Isom 𝑆 , E ( 𝑌 , dom 𝑁 ) ∧ ( 𝐶 ∈ 𝑌 ∧ 𝐷 ∈ 𝑌 ) ) → ( 𝐶 𝑆 𝐷 ↔ ( ◡ 𝑁 ‘ 𝐶 ) E ( ◡ 𝑁 ‘ 𝐷 ) ) ) |
| 85 |
80 81 83 84
|
syl12anc |
⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → ( 𝐶 𝑆 𝐷 ↔ ( ◡ 𝑁 ‘ 𝐶 ) E ( ◡ 𝑁 ‘ 𝐷 ) ) ) |
| 86 |
64 77 85
|
3bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ∧ 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) ) ) → ( 𝐶 𝑅 𝐷 ↔ 𝐶 𝑆 𝐷 ) ) |
| 87 |
86
|
expr |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) → ( 𝐶 𝑅 𝐷 ↔ 𝐶 𝑆 𝐷 ) ) ) |
| 88 |
59 87
|
jca |
⊢ ( ( 𝜑 ∧ 𝐶 𝑅 ( 𝑀 ‘ 𝐵 ) ) → ( 𝐶 𝑆 ( 𝑁 ‘ 𝐵 ) ∧ ( 𝐷 𝑅 ( 𝑀 ‘ 𝐵 ) → ( 𝐶 𝑅 𝐷 ↔ 𝐶 𝑆 𝐷 ) ) ) ) |