Step |
Hyp |
Ref |
Expression |
1 |
|
fpwwe2.1 |
⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 [ ( ◡ 𝑟 “ { 𝑦 } ) / 𝑢 ] ( 𝑢 𝐹 ( 𝑟 ∩ ( 𝑢 × 𝑢 ) ) ) = 𝑦 ) ) } |
2 |
|
fpwwe2.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
3 |
|
fpwwe2.3 |
⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
4 |
|
fpwwe2lem8.x |
⊢ ( 𝜑 → 𝑋 𝑊 𝑅 ) |
5 |
|
fpwwe2lem8.y |
⊢ ( 𝜑 → 𝑌 𝑊 𝑆 ) |
6 |
|
fpwwe2lem8.m |
⊢ 𝑀 = OrdIso ( 𝑅 , 𝑋 ) |
7 |
|
fpwwe2lem8.n |
⊢ 𝑁 = OrdIso ( 𝑆 , 𝑌 ) |
8 |
|
fpwwe2lem8.s |
⊢ ( 𝜑 → dom 𝑀 ⊆ dom 𝑁 ) |
9 |
6
|
oif |
⊢ 𝑀 : dom 𝑀 ⟶ 𝑋 |
10 |
|
ffn |
⊢ ( 𝑀 : dom 𝑀 ⟶ 𝑋 → 𝑀 Fn dom 𝑀 ) |
11 |
9 10
|
mp1i |
⊢ ( 𝜑 → 𝑀 Fn dom 𝑀 ) |
12 |
7
|
oif |
⊢ 𝑁 : dom 𝑁 ⟶ 𝑌 |
13 |
|
ffn |
⊢ ( 𝑁 : dom 𝑁 ⟶ 𝑌 → 𝑁 Fn dom 𝑁 ) |
14 |
12 13
|
mp1i |
⊢ ( 𝜑 → 𝑁 Fn dom 𝑁 ) |
15 |
14 8
|
fnssresd |
⊢ ( 𝜑 → ( 𝑁 ↾ dom 𝑀 ) Fn dom 𝑀 ) |
16 |
6
|
oicl |
⊢ Ord dom 𝑀 |
17 |
|
ordelon |
⊢ ( ( Ord dom 𝑀 ∧ 𝑤 ∈ dom 𝑀 ) → 𝑤 ∈ On ) |
18 |
16 17
|
mpan |
⊢ ( 𝑤 ∈ dom 𝑀 → 𝑤 ∈ On ) |
19 |
|
eleq1w |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ dom 𝑀 ↔ 𝑦 ∈ dom 𝑀 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑀 ‘ 𝑤 ) = ( 𝑀 ‘ 𝑦 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( 𝑁 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑦 ) ) |
22 |
20 21
|
eqeq12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ↔ ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) |
23 |
19 22
|
imbi12d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ↔ ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑤 = 𝑦 → ( ( 𝜑 → ( 𝑤 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) ↔ ( 𝜑 → ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) ) ) |
25 |
|
r19.21v |
⊢ ( ∀ 𝑦 ∈ 𝑤 ( 𝜑 → ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) ↔ ( 𝜑 → ∀ 𝑦 ∈ 𝑤 ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) ) |
26 |
16
|
a1i |
⊢ ( 𝜑 → Ord dom 𝑀 ) |
27 |
|
ordelss |
⊢ ( ( Ord dom 𝑀 ∧ 𝑤 ∈ dom 𝑀 ) → 𝑤 ⊆ dom 𝑀 ) |
28 |
26 27
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → 𝑤 ⊆ dom 𝑀 ) |
29 |
28
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ 𝑦 ∈ 𝑤 ) → 𝑦 ∈ dom 𝑀 ) |
30 |
|
pm2.27 |
⊢ ( 𝑦 ∈ dom 𝑀 → ( ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) |
31 |
29 30
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ 𝑦 ∈ 𝑤 ) → ( ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) |
32 |
31
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( ∀ 𝑦 ∈ 𝑤 ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑤 ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) |
33 |
|
fnssres |
⊢ ( ( 𝑀 Fn dom 𝑀 ∧ 𝑤 ⊆ dom 𝑀 ) → ( 𝑀 ↾ 𝑤 ) Fn 𝑤 ) |
34 |
11 28 33
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( 𝑀 ↾ 𝑤 ) Fn 𝑤 ) |
35 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → dom 𝑀 ⊆ dom 𝑁 ) |
36 |
28 35
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → 𝑤 ⊆ dom 𝑁 ) |
37 |
|
fnssres |
⊢ ( ( 𝑁 Fn dom 𝑁 ∧ 𝑤 ⊆ dom 𝑁 ) → ( 𝑁 ↾ 𝑤 ) Fn 𝑤 ) |
38 |
14 36 37
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( 𝑁 ↾ 𝑤 ) Fn 𝑤 ) |
39 |
|
eqfnfv |
⊢ ( ( ( 𝑀 ↾ 𝑤 ) Fn 𝑤 ∧ ( 𝑁 ↾ 𝑤 ) Fn 𝑤 ) → ( ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ↔ ∀ 𝑦 ∈ 𝑤 ( ( 𝑀 ↾ 𝑤 ) ‘ 𝑦 ) = ( ( 𝑁 ↾ 𝑤 ) ‘ 𝑦 ) ) ) |
40 |
34 38 39
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ↔ ∀ 𝑦 ∈ 𝑤 ( ( 𝑀 ↾ 𝑤 ) ‘ 𝑦 ) = ( ( 𝑁 ↾ 𝑤 ) ‘ 𝑦 ) ) ) |
41 |
|
fvres |
⊢ ( 𝑦 ∈ 𝑤 → ( ( 𝑀 ↾ 𝑤 ) ‘ 𝑦 ) = ( 𝑀 ‘ 𝑦 ) ) |
42 |
|
fvres |
⊢ ( 𝑦 ∈ 𝑤 → ( ( 𝑁 ↾ 𝑤 ) ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) |
43 |
41 42
|
eqeq12d |
⊢ ( 𝑦 ∈ 𝑤 → ( ( ( 𝑀 ↾ 𝑤 ) ‘ 𝑦 ) = ( ( 𝑁 ↾ 𝑤 ) ‘ 𝑦 ) ↔ ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) |
44 |
43
|
ralbiia |
⊢ ( ∀ 𝑦 ∈ 𝑤 ( ( 𝑀 ↾ 𝑤 ) ‘ 𝑦 ) = ( ( 𝑁 ↾ 𝑤 ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) |
45 |
40 44
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ↔ ∀ 𝑦 ∈ 𝑤 ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) |
46 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → 𝐴 ∈ 𝑉 ) |
47 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → 𝜑 ) |
48 |
47 3
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ∧ 𝑟 We 𝑥 ) ) → ( 𝑥 𝐹 𝑟 ) ∈ 𝐴 ) |
49 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → 𝑋 𝑊 𝑅 ) |
50 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → 𝑌 𝑊 𝑆 ) |
51 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → 𝑤 ∈ dom 𝑀 ) |
52 |
8
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → 𝑤 ∈ dom 𝑁 ) |
53 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → 𝑤 ∈ dom 𝑁 ) |
54 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) |
55 |
1 46 48 49 50 6 7 51 53 54
|
fpwwe2lem6 |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) ∧ 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ) → ( 𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) ∧ ( 𝑧 𝑅 ( 𝑀 ‘ 𝑤 ) → ( 𝑦 𝑅 𝑧 ↔ 𝑦 𝑆 𝑧 ) ) ) ) |
56 |
55
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) ∧ 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ) → 𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) ) |
57 |
54
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑁 ↾ 𝑤 ) = ( 𝑀 ↾ 𝑤 ) ) |
58 |
1 46 48 50 49 7 6 53 51 57
|
fpwwe2lem6 |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) ∧ 𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) ) → ( 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ∧ ( 𝑧 𝑆 ( 𝑁 ‘ 𝑤 ) → ( 𝑦 𝑆 𝑧 ↔ 𝑦 𝑅 𝑧 ) ) ) ) |
59 |
58
|
simpld |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) ∧ 𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) ) → 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ) |
60 |
56 59
|
impbida |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ↔ 𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) ) ) |
61 |
|
fvex |
⊢ ( 𝑀 ‘ 𝑤 ) ∈ V |
62 |
|
vex |
⊢ 𝑦 ∈ V |
63 |
62
|
eliniseg |
⊢ ( ( 𝑀 ‘ 𝑤 ) ∈ V → ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ↔ 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ) ) |
64 |
61 63
|
ax-mp |
⊢ ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ↔ 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ) |
65 |
|
fvex |
⊢ ( 𝑁 ‘ 𝑤 ) ∈ V |
66 |
62
|
eliniseg |
⊢ ( ( 𝑁 ‘ 𝑤 ) ∈ V → ( 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ↔ 𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) ) ) |
67 |
65 66
|
ax-mp |
⊢ ( 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ↔ 𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) ) |
68 |
60 64 67
|
3bitr4g |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ↔ 𝑦 ∈ ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ) ) |
69 |
68
|
eqrdv |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) = ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ) |
70 |
|
relinxp |
⊢ Rel ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) |
71 |
|
relinxp |
⊢ Rel ( 𝑆 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) |
72 |
|
vex |
⊢ 𝑧 ∈ V |
73 |
72
|
eliniseg |
⊢ ( ( 𝑀 ‘ 𝑤 ) ∈ V → ( 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ↔ 𝑧 𝑅 ( 𝑀 ‘ 𝑤 ) ) ) |
74 |
63 73
|
anbi12d |
⊢ ( ( 𝑀 ‘ 𝑤 ) ∈ V → ( ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ∧ 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ↔ ( 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ∧ 𝑧 𝑅 ( 𝑀 ‘ 𝑤 ) ) ) ) |
75 |
61 74
|
ax-mp |
⊢ ( ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ∧ 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ↔ ( 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ∧ 𝑧 𝑅 ( 𝑀 ‘ 𝑤 ) ) ) |
76 |
55
|
simprd |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) ∧ 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ) → ( 𝑧 𝑅 ( 𝑀 ‘ 𝑤 ) → ( 𝑦 𝑅 𝑧 ↔ 𝑦 𝑆 𝑧 ) ) ) |
77 |
76
|
impr |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) ∧ ( 𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ∧ 𝑧 𝑅 ( 𝑀 ‘ 𝑤 ) ) ) → ( 𝑦 𝑅 𝑧 ↔ 𝑦 𝑆 𝑧 ) ) |
78 |
75 77
|
sylan2b |
⊢ ( ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) ∧ ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ∧ 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) → ( 𝑦 𝑅 𝑧 ↔ 𝑦 𝑆 𝑧 ) ) |
79 |
78
|
pm5.32da |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( ( ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ∧ 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ∧ 𝑦 𝑅 𝑧 ) ↔ ( ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ∧ 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ∧ 𝑦 𝑆 𝑧 ) ) ) |
80 |
|
df-br |
⊢ ( 𝑦 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ) |
81 |
|
brinxp2 |
⊢ ( 𝑦 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) 𝑧 ↔ ( ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ∧ 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ∧ 𝑦 𝑅 𝑧 ) ) |
82 |
80 81
|
bitr3i |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ↔ ( ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ∧ 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ∧ 𝑦 𝑅 𝑧 ) ) |
83 |
|
df-br |
⊢ ( 𝑦 ( 𝑆 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) 𝑧 ↔ 〈 𝑦 , 𝑧 〉 ∈ ( 𝑆 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ) |
84 |
|
brinxp2 |
⊢ ( 𝑦 ( 𝑆 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) 𝑧 ↔ ( ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ∧ 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ∧ 𝑦 𝑆 𝑧 ) ) |
85 |
83 84
|
bitr3i |
⊢ ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝑆 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ↔ ( ( 𝑦 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ∧ 𝑧 ∈ ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ∧ 𝑦 𝑆 𝑧 ) ) |
86 |
79 82 85
|
3bitr4g |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 〈 𝑦 , 𝑧 〉 ∈ ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ↔ 〈 𝑦 , 𝑧 〉 ∈ ( 𝑆 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ) ) |
87 |
70 71 86
|
eqrelrdv |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) = ( 𝑆 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ) |
88 |
69
|
sqxpeqd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) = ( ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) × ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ) ) |
89 |
88
|
ineq2d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑆 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) = ( 𝑆 ∩ ( ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) × ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ) ) ) |
90 |
87 89
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) = ( 𝑆 ∩ ( ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) × ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ) ) ) |
91 |
69 90
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ) = ( ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) 𝐹 ( 𝑆 ∩ ( ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) × ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ) ) ) ) |
92 |
9
|
ffvelrni |
⊢ ( 𝑤 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑤 ) ∈ 𝑋 ) |
93 |
92
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( 𝑀 ‘ 𝑤 ) ∈ 𝑋 ) |
94 |
93
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑀 ‘ 𝑤 ) ∈ 𝑋 ) |
95 |
1 2 4
|
fpwwe2lem3 |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝑤 ) ∈ 𝑋 ) → ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ) = ( 𝑀 ‘ 𝑤 ) ) |
96 |
47 94 95
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) 𝐹 ( 𝑅 ∩ ( ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) × ( ◡ 𝑅 “ { ( 𝑀 ‘ 𝑤 ) } ) ) ) ) = ( 𝑀 ‘ 𝑤 ) ) |
97 |
12
|
ffvelrni |
⊢ ( 𝑤 ∈ dom 𝑁 → ( 𝑁 ‘ 𝑤 ) ∈ 𝑌 ) |
98 |
52 97
|
syl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( 𝑁 ‘ 𝑤 ) ∈ 𝑌 ) |
99 |
98
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑁 ‘ 𝑤 ) ∈ 𝑌 ) |
100 |
1 2 5
|
fpwwe2lem3 |
⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝑤 ) ∈ 𝑌 ) → ( ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) 𝐹 ( 𝑆 ∩ ( ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) × ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ) ) ) = ( 𝑁 ‘ 𝑤 ) ) |
101 |
47 99 100
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) 𝐹 ( 𝑆 ∩ ( ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) × ( ◡ 𝑆 “ { ( 𝑁 ‘ 𝑤 ) } ) ) ) ) = ( 𝑁 ‘ 𝑤 ) ) |
102 |
91 96 101
|
3eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) ∧ ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) ) → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) |
103 |
102
|
ex |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( ( 𝑀 ↾ 𝑤 ) = ( 𝑁 ↾ 𝑤 ) → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) |
104 |
45 103
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( ∀ 𝑦 ∈ 𝑤 ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) |
105 |
32 104
|
syld |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( ∀ 𝑦 ∈ 𝑤 ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) |
106 |
105
|
ex |
⊢ ( 𝜑 → ( 𝑤 ∈ dom 𝑀 → ( ∀ 𝑦 ∈ 𝑤 ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) ) |
107 |
106
|
com23 |
⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑤 ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) → ( 𝑤 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) ) |
108 |
107
|
a2i |
⊢ ( ( 𝜑 → ∀ 𝑦 ∈ 𝑤 ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝜑 → ( 𝑤 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) ) |
109 |
25 108
|
sylbi |
⊢ ( ∀ 𝑦 ∈ 𝑤 ( 𝜑 → ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝜑 → ( 𝑤 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) ) |
110 |
109
|
a1i |
⊢ ( 𝑤 ∈ On → ( ∀ 𝑦 ∈ 𝑤 ( 𝜑 → ( 𝑦 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑦 ) = ( 𝑁 ‘ 𝑦 ) ) ) → ( 𝜑 → ( 𝑤 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) ) ) |
111 |
24 110
|
tfis2 |
⊢ ( 𝑤 ∈ On → ( 𝜑 → ( 𝑤 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) ) |
112 |
111
|
com3l |
⊢ ( 𝜑 → ( 𝑤 ∈ dom 𝑀 → ( 𝑤 ∈ On → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) ) |
113 |
18 112
|
mpdi |
⊢ ( 𝜑 → ( 𝑤 ∈ dom 𝑀 → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) ) |
114 |
113
|
imp |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( 𝑀 ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) |
115 |
|
fvres |
⊢ ( 𝑤 ∈ dom 𝑀 → ( ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) |
116 |
115
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑤 ) = ( 𝑁 ‘ 𝑤 ) ) |
117 |
114 116
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ dom 𝑀 ) → ( 𝑀 ‘ 𝑤 ) = ( ( 𝑁 ↾ dom 𝑀 ) ‘ 𝑤 ) ) |
118 |
11 15 117
|
eqfnfvd |
⊢ ( 𝜑 → 𝑀 = ( 𝑁 ↾ dom 𝑀 ) ) |