| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fpwwe2.1 | 
							⊢ 𝑊  =  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 ) )  ∧  ( 𝑟  We  𝑥  ∧  ∀ 𝑦  ∈  𝑥 [ ( ◡ 𝑟  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( 𝑟  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) }  | 
						
						
							| 2 | 
							
								
							 | 
							fpwwe2.2 | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑉 )  | 
						
						
							| 3 | 
							
								
							 | 
							fpwwe2.3 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  →  ( 𝑥 𝐹 𝑟 )  ∈  𝐴 )  | 
						
						
							| 4 | 
							
								
							 | 
							fpwwe2lem8.x | 
							⊢ ( 𝜑  →  𝑋 𝑊 𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							fpwwe2lem8.y | 
							⊢ ( 𝜑  →  𝑌 𝑊 𝑆 )  | 
						
						
							| 6 | 
							
								
							 | 
							fpwwe2lem8.m | 
							⊢ 𝑀  =  OrdIso ( 𝑅 ,  𝑋 )  | 
						
						
							| 7 | 
							
								
							 | 
							fpwwe2lem8.n | 
							⊢ 𝑁  =  OrdIso ( 𝑆 ,  𝑌 )  | 
						
						
							| 8 | 
							
								
							 | 
							fpwwe2lem8.s | 
							⊢ ( 𝜑  →  dom  𝑀  ⊆  dom  𝑁 )  | 
						
						
							| 9 | 
							
								6
							 | 
							oif | 
							⊢ 𝑀 : dom  𝑀 ⟶ 𝑋  | 
						
						
							| 10 | 
							
								
							 | 
							ffn | 
							⊢ ( 𝑀 : dom  𝑀 ⟶ 𝑋  →  𝑀  Fn  dom  𝑀 )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							mp1i | 
							⊢ ( 𝜑  →  𝑀  Fn  dom  𝑀 )  | 
						
						
							| 12 | 
							
								7
							 | 
							oif | 
							⊢ 𝑁 : dom  𝑁 ⟶ 𝑌  | 
						
						
							| 13 | 
							
								
							 | 
							ffn | 
							⊢ ( 𝑁 : dom  𝑁 ⟶ 𝑌  →  𝑁  Fn  dom  𝑁 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							mp1i | 
							⊢ ( 𝜑  →  𝑁  Fn  dom  𝑁 )  | 
						
						
							| 15 | 
							
								14 8
							 | 
							fnssresd | 
							⊢ ( 𝜑  →  ( 𝑁  ↾  dom  𝑀 )  Fn  dom  𝑀 )  | 
						
						
							| 16 | 
							
								6
							 | 
							oicl | 
							⊢ Ord  dom  𝑀  | 
						
						
							| 17 | 
							
								
							 | 
							ordelon | 
							⊢ ( ( Ord  dom  𝑀  ∧  𝑤  ∈  dom  𝑀 )  →  𝑤  ∈  On )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							mpan | 
							⊢ ( 𝑤  ∈  dom  𝑀  →  𝑤  ∈  On )  | 
						
						
							| 19 | 
							
								
							 | 
							eleq1w | 
							⊢ ( 𝑤  =  𝑦  →  ( 𝑤  ∈  dom  𝑀  ↔  𝑦  ∈  dom  𝑀 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑤  =  𝑦  →  ( 𝑀 ‘ 𝑤 )  =  ( 𝑀 ‘ 𝑦 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑤  =  𝑦  →  ( 𝑁 ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑦 ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							eqeq12d | 
							⊢ ( 𝑤  =  𝑦  →  ( ( 𝑀 ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑤 )  ↔  ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) ) )  | 
						
						
							| 23 | 
							
								19 22
							 | 
							imbi12d | 
							⊢ ( 𝑤  =  𝑦  →  ( ( 𝑤  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑤 ) )  ↔  ( 𝑦  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							imbi2d | 
							⊢ ( 𝑤  =  𝑦  →  ( ( 𝜑  →  ( 𝑤  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑤 ) ) )  ↔  ( 𝜑  →  ( 𝑦  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) ) ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							r19.21v | 
							⊢ ( ∀ 𝑦  ∈  𝑤 ( 𝜑  →  ( 𝑦  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) ) )  ↔  ( 𝜑  →  ∀ 𝑦  ∈  𝑤 ( 𝑦  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) ) ) )  | 
						
						
							| 26 | 
							
								16
							 | 
							a1i | 
							⊢ ( 𝜑  →  Ord  dom  𝑀 )  | 
						
						
							| 27 | 
							
								
							 | 
							ordelss | 
							⊢ ( ( Ord  dom  𝑀  ∧  𝑤  ∈  dom  𝑀 )  →  𝑤  ⊆  dom  𝑀 )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							sylan | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  →  𝑤  ⊆  dom  𝑀 )  | 
						
						
							| 29 | 
							
								28
							 | 
							sselda | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  𝑦  ∈  𝑤 )  →  𝑦  ∈  dom  𝑀 )  | 
						
						
							| 30 | 
							
								
							 | 
							pm2.27 | 
							⊢ ( 𝑦  ∈  dom  𝑀  →  ( ( 𝑦  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) )  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) ) )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  𝑦  ∈  𝑤 )  →  ( ( 𝑦  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) )  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							ralimdva | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  →  ( ∀ 𝑦  ∈  𝑤 ( 𝑦  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) )  →  ∀ 𝑦  ∈  𝑤 ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							fnssres | 
							⊢ ( ( 𝑀  Fn  dom  𝑀  ∧  𝑤  ⊆  dom  𝑀 )  →  ( 𝑀  ↾  𝑤 )  Fn  𝑤 )  | 
						
						
							| 34 | 
							
								11 28 33
							 | 
							syl2an2r | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  →  ( 𝑀  ↾  𝑤 )  Fn  𝑤 )  | 
						
						
							| 35 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  →  dom  𝑀  ⊆  dom  𝑁 )  | 
						
						
							| 36 | 
							
								28 35
							 | 
							sstrd | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  →  𝑤  ⊆  dom  𝑁 )  | 
						
						
							| 37 | 
							
								
							 | 
							fnssres | 
							⊢ ( ( 𝑁  Fn  dom  𝑁  ∧  𝑤  ⊆  dom  𝑁 )  →  ( 𝑁  ↾  𝑤 )  Fn  𝑤 )  | 
						
						
							| 38 | 
							
								14 36 37
							 | 
							syl2an2r | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  →  ( 𝑁  ↾  𝑤 )  Fn  𝑤 )  | 
						
						
							| 39 | 
							
								
							 | 
							eqfnfv | 
							⊢ ( ( ( 𝑀  ↾  𝑤 )  Fn  𝑤  ∧  ( 𝑁  ↾  𝑤 )  Fn  𝑤 )  →  ( ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 )  ↔  ∀ 𝑦  ∈  𝑤 ( ( 𝑀  ↾  𝑤 ) ‘ 𝑦 )  =  ( ( 𝑁  ↾  𝑤 ) ‘ 𝑦 ) ) )  | 
						
						
							| 40 | 
							
								34 38 39
							 | 
							syl2anc | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  →  ( ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 )  ↔  ∀ 𝑦  ∈  𝑤 ( ( 𝑀  ↾  𝑤 ) ‘ 𝑦 )  =  ( ( 𝑁  ↾  𝑤 ) ‘ 𝑦 ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑦  ∈  𝑤  →  ( ( 𝑀  ↾  𝑤 ) ‘ 𝑦 )  =  ( 𝑀 ‘ 𝑦 ) )  | 
						
						
							| 42 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑦  ∈  𝑤  →  ( ( 𝑁  ↾  𝑤 ) ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							eqeq12d | 
							⊢ ( 𝑦  ∈  𝑤  →  ( ( ( 𝑀  ↾  𝑤 ) ‘ 𝑦 )  =  ( ( 𝑁  ↾  𝑤 ) ‘ 𝑦 )  ↔  ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							ralbiia | 
							⊢ ( ∀ 𝑦  ∈  𝑤 ( ( 𝑀  ↾  𝑤 ) ‘ 𝑦 )  =  ( ( 𝑁  ↾  𝑤 ) ‘ 𝑦 )  ↔  ∀ 𝑦  ∈  𝑤 ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) )  | 
						
						
							| 45 | 
							
								40 44
							 | 
							bitrdi | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  →  ( ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 )  ↔  ∀ 𝑦  ∈  𝑤 ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) ) )  | 
						
						
							| 46 | 
							
								2
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  𝐴  ∈  𝑉 )  | 
						
						
							| 47 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  𝜑 )  | 
						
						
							| 48 | 
							
								47 3
							 | 
							sylan | 
							⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  →  ( 𝑥 𝐹 𝑟 )  ∈  𝐴 )  | 
						
						
							| 49 | 
							
								4
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  𝑋 𝑊 𝑅 )  | 
						
						
							| 50 | 
							
								5
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  𝑌 𝑊 𝑆 )  | 
						
						
							| 51 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  𝑤  ∈  dom  𝑀 )  | 
						
						
							| 52 | 
							
								8
							 | 
							sselda | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  →  𝑤  ∈  dom  𝑁 )  | 
						
						
							| 53 | 
							
								52
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  𝑤  ∈  dom  𝑁 )  | 
						
						
							| 54 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  | 
						
						
							| 55 | 
							
								1 46 48 49 50 6 7 51 53 54
							 | 
							fpwwe2lem6 | 
							⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  ∧  𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) )  →  ( 𝑦 𝑆 ( 𝑁 ‘ 𝑤 )  ∧  ( 𝑧 𝑅 ( 𝑀 ‘ 𝑤 )  →  ( 𝑦 𝑅 𝑧  ↔  𝑦 𝑆 𝑧 ) ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							simpld | 
							⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  ∧  𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) )  →  𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) )  | 
						
						
							| 57 | 
							
								54
							 | 
							eqcomd | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  ( 𝑁  ↾  𝑤 )  =  ( 𝑀  ↾  𝑤 ) )  | 
						
						
							| 58 | 
							
								1 46 48 50 49 7 6 53 51 57
							 | 
							fpwwe2lem6 | 
							⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  ∧  𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) )  →  ( 𝑦 𝑅 ( 𝑀 ‘ 𝑤 )  ∧  ( 𝑧 𝑆 ( 𝑁 ‘ 𝑤 )  →  ( 𝑦 𝑆 𝑧  ↔  𝑦 𝑅 𝑧 ) ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							simpld | 
							⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  ∧  𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) )  →  𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) )  | 
						
						
							| 60 | 
							
								56 59
							 | 
							impbida | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  ( 𝑦 𝑅 ( 𝑀 ‘ 𝑤 )  ↔  𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) ) )  | 
						
						
							| 61 | 
							
								
							 | 
							fvex | 
							⊢ ( 𝑀 ‘ 𝑤 )  ∈  V  | 
						
						
							| 62 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 63 | 
							
								62
							 | 
							eliniseg | 
							⊢ ( ( 𝑀 ‘ 𝑤 )  ∈  V  →  ( 𝑦  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ↔  𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) ) )  | 
						
						
							| 64 | 
							
								61 63
							 | 
							ax-mp | 
							⊢ ( 𝑦  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ↔  𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) )  | 
						
						
							| 65 | 
							
								
							 | 
							fvex | 
							⊢ ( 𝑁 ‘ 𝑤 )  ∈  V  | 
						
						
							| 66 | 
							
								62
							 | 
							eliniseg | 
							⊢ ( ( 𝑁 ‘ 𝑤 )  ∈  V  →  ( 𝑦  ∈  ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } )  ↔  𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) ) )  | 
						
						
							| 67 | 
							
								65 66
							 | 
							ax-mp | 
							⊢ ( 𝑦  ∈  ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } )  ↔  𝑦 𝑆 ( 𝑁 ‘ 𝑤 ) )  | 
						
						
							| 68 | 
							
								60 64 67
							 | 
							3bitr4g | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  ( 𝑦  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ↔  𝑦  ∈  ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							eqrdv | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  =  ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } ) )  | 
						
						
							| 70 | 
							
								
							 | 
							relinxp | 
							⊢ Rel  ( 𝑅  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) )  | 
						
						
							| 71 | 
							
								
							 | 
							relinxp | 
							⊢ Rel  ( 𝑆  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) )  | 
						
						
							| 72 | 
							
								
							 | 
							vex | 
							⊢ 𝑧  ∈  V  | 
						
						
							| 73 | 
							
								72
							 | 
							eliniseg | 
							⊢ ( ( 𝑀 ‘ 𝑤 )  ∈  V  →  ( 𝑧  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ↔  𝑧 𝑅 ( 𝑀 ‘ 𝑤 ) ) )  | 
						
						
							| 74 | 
							
								63 73
							 | 
							anbi12d | 
							⊢ ( ( 𝑀 ‘ 𝑤 )  ∈  V  →  ( ( 𝑦  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ∧  𝑧  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) )  ↔  ( 𝑦 𝑅 ( 𝑀 ‘ 𝑤 )  ∧  𝑧 𝑅 ( 𝑀 ‘ 𝑤 ) ) ) )  | 
						
						
							| 75 | 
							
								61 74
							 | 
							ax-mp | 
							⊢ ( ( 𝑦  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ∧  𝑧  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) )  ↔  ( 𝑦 𝑅 ( 𝑀 ‘ 𝑤 )  ∧  𝑧 𝑅 ( 𝑀 ‘ 𝑤 ) ) )  | 
						
						
							| 76 | 
							
								55
							 | 
							simprd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  ∧  𝑦 𝑅 ( 𝑀 ‘ 𝑤 ) )  →  ( 𝑧 𝑅 ( 𝑀 ‘ 𝑤 )  →  ( 𝑦 𝑅 𝑧  ↔  𝑦 𝑆 𝑧 ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							impr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  ∧  ( 𝑦 𝑅 ( 𝑀 ‘ 𝑤 )  ∧  𝑧 𝑅 ( 𝑀 ‘ 𝑤 ) ) )  →  ( 𝑦 𝑅 𝑧  ↔  𝑦 𝑆 𝑧 ) )  | 
						
						
							| 78 | 
							
								75 77
							 | 
							sylan2b | 
							⊢ ( ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  ∧  ( 𝑦  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ∧  𝑧  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) )  →  ( 𝑦 𝑅 𝑧  ↔  𝑦 𝑆 𝑧 ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							pm5.32da | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  ( ( ( 𝑦  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ∧  𝑧  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) )  ∧  𝑦 𝑅 𝑧 )  ↔  ( ( 𝑦  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ∧  𝑧  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) )  ∧  𝑦 𝑆 𝑧 ) ) )  | 
						
						
							| 80 | 
							
								
							 | 
							df-br | 
							⊢ ( 𝑦 ( 𝑅  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) ) 𝑧  ↔  〈 𝑦 ,  𝑧 〉  ∈  ( 𝑅  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) ) )  | 
						
						
							| 81 | 
							
								
							 | 
							brinxp2 | 
							⊢ ( 𝑦 ( 𝑅  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) ) 𝑧  ↔  ( ( 𝑦  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ∧  𝑧  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) )  ∧  𝑦 𝑅 𝑧 ) )  | 
						
						
							| 82 | 
							
								80 81
							 | 
							bitr3i | 
							⊢ ( 〈 𝑦 ,  𝑧 〉  ∈  ( 𝑅  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) )  ↔  ( ( 𝑦  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ∧  𝑧  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) )  ∧  𝑦 𝑅 𝑧 ) )  | 
						
						
							| 83 | 
							
								
							 | 
							df-br | 
							⊢ ( 𝑦 ( 𝑆  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) ) 𝑧  ↔  〈 𝑦 ,  𝑧 〉  ∈  ( 𝑆  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) ) )  | 
						
						
							| 84 | 
							
								
							 | 
							brinxp2 | 
							⊢ ( 𝑦 ( 𝑆  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) ) 𝑧  ↔  ( ( 𝑦  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ∧  𝑧  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) )  ∧  𝑦 𝑆 𝑧 ) )  | 
						
						
							| 85 | 
							
								83 84
							 | 
							bitr3i | 
							⊢ ( 〈 𝑦 ,  𝑧 〉  ∈  ( 𝑆  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) )  ↔  ( ( 𝑦  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ∧  𝑧  ∈  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) )  ∧  𝑦 𝑆 𝑧 ) )  | 
						
						
							| 86 | 
							
								79 82 85
							 | 
							3bitr4g | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  ( 〈 𝑦 ,  𝑧 〉  ∈  ( 𝑅  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) )  ↔  〈 𝑦 ,  𝑧 〉  ∈  ( 𝑆  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) ) ) )  | 
						
						
							| 87 | 
							
								70 71 86
							 | 
							eqrelrdv | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  ( 𝑅  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) )  =  ( 𝑆  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) ) )  | 
						
						
							| 88 | 
							
								69
							 | 
							sqxpeqd | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) )  =  ( ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } )  ×  ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } ) ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							ineq2d | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  ( 𝑆  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) )  =  ( 𝑆  ∩  ( ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } )  ×  ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } ) ) ) )  | 
						
						
							| 90 | 
							
								87 89
							 | 
							eqtrd | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  ( 𝑅  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) )  =  ( 𝑆  ∩  ( ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } )  ×  ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } ) ) ) )  | 
						
						
							| 91 | 
							
								69 90
							 | 
							oveq12d | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) 𝐹 ( 𝑅  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) ) )  =  ( ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } ) 𝐹 ( 𝑆  ∩  ( ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } )  ×  ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } ) ) ) ) )  | 
						
						
							| 92 | 
							
								9
							 | 
							ffvelcdmi | 
							⊢ ( 𝑤  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑤 )  ∈  𝑋 )  | 
						
						
							| 93 | 
							
								92
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  →  ( 𝑀 ‘ 𝑤 )  ∈  𝑋 )  | 
						
						
							| 94 | 
							
								93
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  ( 𝑀 ‘ 𝑤 )  ∈  𝑋 )  | 
						
						
							| 95 | 
							
								1 2 4
							 | 
							fpwwe2lem3 | 
							⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝑤 )  ∈  𝑋 )  →  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) 𝐹 ( 𝑅  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) ) )  =  ( 𝑀 ‘ 𝑤 ) )  | 
						
						
							| 96 | 
							
								47 94 95
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) 𝐹 ( 𝑅  ∩  ( ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } )  ×  ( ◡ 𝑅  “  { ( 𝑀 ‘ 𝑤 ) } ) ) ) )  =  ( 𝑀 ‘ 𝑤 ) )  | 
						
						
							| 97 | 
							
								12
							 | 
							ffvelcdmi | 
							⊢ ( 𝑤  ∈  dom  𝑁  →  ( 𝑁 ‘ 𝑤 )  ∈  𝑌 )  | 
						
						
							| 98 | 
							
								52 97
							 | 
							syl | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  →  ( 𝑁 ‘ 𝑤 )  ∈  𝑌 )  | 
						
						
							| 99 | 
							
								98
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  ( 𝑁 ‘ 𝑤 )  ∈  𝑌 )  | 
						
						
							| 100 | 
							
								1 2 5
							 | 
							fpwwe2lem3 | 
							⊢ ( ( 𝜑  ∧  ( 𝑁 ‘ 𝑤 )  ∈  𝑌 )  →  ( ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } ) 𝐹 ( 𝑆  ∩  ( ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } )  ×  ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } ) ) ) )  =  ( 𝑁 ‘ 𝑤 ) )  | 
						
						
							| 101 | 
							
								47 99 100
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  ( ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } ) 𝐹 ( 𝑆  ∩  ( ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } )  ×  ( ◡ 𝑆  “  { ( 𝑁 ‘ 𝑤 ) } ) ) ) )  =  ( 𝑁 ‘ 𝑤 ) )  | 
						
						
							| 102 | 
							
								91 96 101
							 | 
							3eqtr3d | 
							⊢ ( ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  ∧  ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 ) )  →  ( 𝑀 ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑤 ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  →  ( ( 𝑀  ↾  𝑤 )  =  ( 𝑁  ↾  𝑤 )  →  ( 𝑀 ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑤 ) ) )  | 
						
						
							| 104 | 
							
								45 103
							 | 
							sylbird | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  →  ( ∀ 𝑦  ∈  𝑤 ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 )  →  ( 𝑀 ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑤 ) ) )  | 
						
						
							| 105 | 
							
								32 104
							 | 
							syld | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  →  ( ∀ 𝑦  ∈  𝑤 ( 𝑦  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) )  →  ( 𝑀 ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑤 ) ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝑤  ∈  dom  𝑀  →  ( ∀ 𝑦  ∈  𝑤 ( 𝑦  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) )  →  ( 𝑀 ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑤 ) ) ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							com23 | 
							⊢ ( 𝜑  →  ( ∀ 𝑦  ∈  𝑤 ( 𝑦  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) )  →  ( 𝑤  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑤 ) ) ) )  | 
						
						
							| 108 | 
							
								107
							 | 
							a2i | 
							⊢ ( ( 𝜑  →  ∀ 𝑦  ∈  𝑤 ( 𝑦  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) ) )  →  ( 𝜑  →  ( 𝑤  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑤 ) ) ) )  | 
						
						
							| 109 | 
							
								25 108
							 | 
							sylbi | 
							⊢ ( ∀ 𝑦  ∈  𝑤 ( 𝜑  →  ( 𝑦  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) ) )  →  ( 𝜑  →  ( 𝑤  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑤 ) ) ) )  | 
						
						
							| 110 | 
							
								109
							 | 
							a1i | 
							⊢ ( 𝑤  ∈  On  →  ( ∀ 𝑦  ∈  𝑤 ( 𝜑  →  ( 𝑦  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑦 )  =  ( 𝑁 ‘ 𝑦 ) ) )  →  ( 𝜑  →  ( 𝑤  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑤 ) ) ) ) )  | 
						
						
							| 111 | 
							
								24 110
							 | 
							tfis2 | 
							⊢ ( 𝑤  ∈  On  →  ( 𝜑  →  ( 𝑤  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑤 ) ) ) )  | 
						
						
							| 112 | 
							
								111
							 | 
							com3l | 
							⊢ ( 𝜑  →  ( 𝑤  ∈  dom  𝑀  →  ( 𝑤  ∈  On  →  ( 𝑀 ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑤 ) ) ) )  | 
						
						
							| 113 | 
							
								18 112
							 | 
							mpdi | 
							⊢ ( 𝜑  →  ( 𝑤  ∈  dom  𝑀  →  ( 𝑀 ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑤 ) ) )  | 
						
						
							| 114 | 
							
								113
							 | 
							imp | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  →  ( 𝑀 ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑤 ) )  | 
						
						
							| 115 | 
							
								
							 | 
							fvres | 
							⊢ ( 𝑤  ∈  dom  𝑀  →  ( ( 𝑁  ↾  dom  𝑀 ) ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑤 ) )  | 
						
						
							| 116 | 
							
								115
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  →  ( ( 𝑁  ↾  dom  𝑀 ) ‘ 𝑤 )  =  ( 𝑁 ‘ 𝑤 ) )  | 
						
						
							| 117 | 
							
								114 116
							 | 
							eqtr4d | 
							⊢ ( ( 𝜑  ∧  𝑤  ∈  dom  𝑀 )  →  ( 𝑀 ‘ 𝑤 )  =  ( ( 𝑁  ↾  dom  𝑀 ) ‘ 𝑤 ) )  | 
						
						
							| 118 | 
							
								11 15 117
							 | 
							eqfnfvd | 
							⊢ ( 𝜑  →  𝑀  =  ( 𝑁  ↾  dom  𝑀 ) )  |