| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fpwwe2.1 | 
							⊢ 𝑊  =  { 〈 𝑥 ,  𝑟 〉  ∣  ( ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 ) )  ∧  ( 𝑟  We  𝑥  ∧  ∀ 𝑦  ∈  𝑥 [ ( ◡ 𝑟  “  { 𝑦 } )  /  𝑢 ] ( 𝑢 𝐹 ( 𝑟  ∩  ( 𝑢  ×  𝑢 ) ) )  =  𝑦 ) ) }  | 
						
						
							| 2 | 
							
								
							 | 
							fpwwe2.2 | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑉 )  | 
						
						
							| 3 | 
							
								
							 | 
							fpwwe2.3 | 
							⊢ ( ( 𝜑  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  →  ( 𝑥 𝐹 𝑟 )  ∈  𝐴 )  | 
						
						
							| 4 | 
							
								
							 | 
							fpwwe2lem9.4 | 
							⊢ ( 𝜑  →  𝑋 𝑊 𝑅 )  | 
						
						
							| 5 | 
							
								
							 | 
							fpwwe2lem9.6 | 
							⊢ ( 𝜑  →  𝑌 𝑊 𝑆 )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							⊢ OrdIso ( 𝑅 ,  𝑋 )  =  OrdIso ( 𝑅 ,  𝑋 )  | 
						
						
							| 7 | 
							
								6
							 | 
							oicl | 
							⊢ Ord  dom  OrdIso ( 𝑅 ,  𝑋 )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							⊢ OrdIso ( 𝑆 ,  𝑌 )  =  OrdIso ( 𝑆 ,  𝑌 )  | 
						
						
							| 9 | 
							
								8
							 | 
							oicl | 
							⊢ Ord  dom  OrdIso ( 𝑆 ,  𝑌 )  | 
						
						
							| 10 | 
							
								
							 | 
							ordtri2or2 | 
							⊢ ( ( Ord  dom  OrdIso ( 𝑅 ,  𝑋 )  ∧  Ord  dom  OrdIso ( 𝑆 ,  𝑌 ) )  →  ( dom  OrdIso ( 𝑅 ,  𝑋 )  ⊆  dom  OrdIso ( 𝑆 ,  𝑌 )  ∨  dom  OrdIso ( 𝑆 ,  𝑌 )  ⊆  dom  OrdIso ( 𝑅 ,  𝑋 ) ) )  | 
						
						
							| 11 | 
							
								7 9 10
							 | 
							mp2an | 
							⊢ ( dom  OrdIso ( 𝑅 ,  𝑋 )  ⊆  dom  OrdIso ( 𝑆 ,  𝑌 )  ∨  dom  OrdIso ( 𝑆 ,  𝑌 )  ⊆  dom  OrdIso ( 𝑅 ,  𝑋 ) )  | 
						
						
							| 12 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  dom  OrdIso ( 𝑅 ,  𝑋 )  ⊆  dom  OrdIso ( 𝑆 ,  𝑌 ) )  →  𝐴  ∈  𝑉 )  | 
						
						
							| 13 | 
							
								3
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  dom  OrdIso ( 𝑅 ,  𝑋 )  ⊆  dom  OrdIso ( 𝑆 ,  𝑌 ) )  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  →  ( 𝑥 𝐹 𝑟 )  ∈  𝐴 )  | 
						
						
							| 14 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  dom  OrdIso ( 𝑅 ,  𝑋 )  ⊆  dom  OrdIso ( 𝑆 ,  𝑌 ) )  →  𝑋 𝑊 𝑅 )  | 
						
						
							| 15 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  dom  OrdIso ( 𝑅 ,  𝑋 )  ⊆  dom  OrdIso ( 𝑆 ,  𝑌 ) )  →  𝑌 𝑊 𝑆 )  | 
						
						
							| 16 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  dom  OrdIso ( 𝑅 ,  𝑋 )  ⊆  dom  OrdIso ( 𝑆 ,  𝑌 ) )  →  dom  OrdIso ( 𝑅 ,  𝑋 )  ⊆  dom  OrdIso ( 𝑆 ,  𝑌 ) )  | 
						
						
							| 17 | 
							
								1 12 13 14 15 6 8 16
							 | 
							fpwwe2lem8 | 
							⊢ ( ( 𝜑  ∧  dom  OrdIso ( 𝑅 ,  𝑋 )  ⊆  dom  OrdIso ( 𝑆 ,  𝑌 ) )  →  ( 𝑋  ⊆  𝑌  ∧  𝑅  =  ( 𝑆  ∩  ( 𝑌  ×  𝑋 ) ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							ex | 
							⊢ ( 𝜑  →  ( dom  OrdIso ( 𝑅 ,  𝑋 )  ⊆  dom  OrdIso ( 𝑆 ,  𝑌 )  →  ( 𝑋  ⊆  𝑌  ∧  𝑅  =  ( 𝑆  ∩  ( 𝑌  ×  𝑋 ) ) ) ) )  | 
						
						
							| 19 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  dom  OrdIso ( 𝑆 ,  𝑌 )  ⊆  dom  OrdIso ( 𝑅 ,  𝑋 ) )  →  𝐴  ∈  𝑉 )  | 
						
						
							| 20 | 
							
								3
							 | 
							adantlr | 
							⊢ ( ( ( 𝜑  ∧  dom  OrdIso ( 𝑆 ,  𝑌 )  ⊆  dom  OrdIso ( 𝑅 ,  𝑋 ) )  ∧  ( 𝑥  ⊆  𝐴  ∧  𝑟  ⊆  ( 𝑥  ×  𝑥 )  ∧  𝑟  We  𝑥 ) )  →  ( 𝑥 𝐹 𝑟 )  ∈  𝐴 )  | 
						
						
							| 21 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  dom  OrdIso ( 𝑆 ,  𝑌 )  ⊆  dom  OrdIso ( 𝑅 ,  𝑋 ) )  →  𝑌 𝑊 𝑆 )  | 
						
						
							| 22 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  dom  OrdIso ( 𝑆 ,  𝑌 )  ⊆  dom  OrdIso ( 𝑅 ,  𝑋 ) )  →  𝑋 𝑊 𝑅 )  | 
						
						
							| 23 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  dom  OrdIso ( 𝑆 ,  𝑌 )  ⊆  dom  OrdIso ( 𝑅 ,  𝑋 ) )  →  dom  OrdIso ( 𝑆 ,  𝑌 )  ⊆  dom  OrdIso ( 𝑅 ,  𝑋 ) )  | 
						
						
							| 24 | 
							
								1 19 20 21 22 8 6 23
							 | 
							fpwwe2lem8 | 
							⊢ ( ( 𝜑  ∧  dom  OrdIso ( 𝑆 ,  𝑌 )  ⊆  dom  OrdIso ( 𝑅 ,  𝑋 ) )  →  ( 𝑌  ⊆  𝑋  ∧  𝑆  =  ( 𝑅  ∩  ( 𝑋  ×  𝑌 ) ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ex | 
							⊢ ( 𝜑  →  ( dom  OrdIso ( 𝑆 ,  𝑌 )  ⊆  dom  OrdIso ( 𝑅 ,  𝑋 )  →  ( 𝑌  ⊆  𝑋  ∧  𝑆  =  ( 𝑅  ∩  ( 𝑋  ×  𝑌 ) ) ) ) )  | 
						
						
							| 26 | 
							
								18 25
							 | 
							orim12d | 
							⊢ ( 𝜑  →  ( ( dom  OrdIso ( 𝑅 ,  𝑋 )  ⊆  dom  OrdIso ( 𝑆 ,  𝑌 )  ∨  dom  OrdIso ( 𝑆 ,  𝑌 )  ⊆  dom  OrdIso ( 𝑅 ,  𝑋 ) )  →  ( ( 𝑋  ⊆  𝑌  ∧  𝑅  =  ( 𝑆  ∩  ( 𝑌  ×  𝑋 ) ) )  ∨  ( 𝑌  ⊆  𝑋  ∧  𝑆  =  ( 𝑅  ∩  ( 𝑋  ×  𝑌 ) ) ) ) ) )  | 
						
						
							| 27 | 
							
								11 26
							 | 
							mpi | 
							⊢ ( 𝜑  →  ( ( 𝑋  ⊆  𝑌  ∧  𝑅  =  ( 𝑆  ∩  ( 𝑌  ×  𝑋 ) ) )  ∨  ( 𝑌  ⊆  𝑋  ∧  𝑆  =  ( 𝑅  ∩  ( 𝑋  ×  𝑌 ) ) ) ) )  |