Metamath Proof Explorer


Theorem fpwwecbv

Description: Lemma for fpwwe . (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Hypothesis fpwwe.1 𝑊 = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 ( 𝐹 ‘ ( 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) }
Assertion fpwwecbv 𝑊 = { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 ( 𝐹 ‘ ( 𝑠 “ { 𝑧 } ) ) = 𝑧 ) ) }

Proof

Step Hyp Ref Expression
1 fpwwe.1 𝑊 = { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 ( 𝐹 ‘ ( 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) }
2 simpl ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → 𝑥 = 𝑎 )
3 2 sseq1d ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( 𝑥𝐴𝑎𝐴 ) )
4 simpr ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → 𝑟 = 𝑠 )
5 2 sqxpeqd ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( 𝑥 × 𝑥 ) = ( 𝑎 × 𝑎 ) )
6 4 5 sseq12d ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) )
7 3 6 anbi12d ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ↔ ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ) )
8 weeq2 ( 𝑥 = 𝑎 → ( 𝑟 We 𝑥𝑟 We 𝑎 ) )
9 weeq1 ( 𝑟 = 𝑠 → ( 𝑟 We 𝑎𝑠 We 𝑎 ) )
10 8 9 sylan9bb ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( 𝑟 We 𝑥𝑠 We 𝑎 ) )
11 sneq ( 𝑦 = 𝑧 → { 𝑦 } = { 𝑧 } )
12 11 imaeq2d ( 𝑦 = 𝑧 → ( 𝑟 “ { 𝑦 } ) = ( 𝑟 “ { 𝑧 } ) )
13 12 fveq2d ( 𝑦 = 𝑧 → ( 𝐹 ‘ ( 𝑟 “ { 𝑦 } ) ) = ( 𝐹 ‘ ( 𝑟 “ { 𝑧 } ) ) )
14 id ( 𝑦 = 𝑧𝑦 = 𝑧 )
15 13 14 eqeq12d ( 𝑦 = 𝑧 → ( ( 𝐹 ‘ ( 𝑟 “ { 𝑦 } ) ) = 𝑦 ↔ ( 𝐹 ‘ ( 𝑟 “ { 𝑧 } ) ) = 𝑧 ) )
16 15 cbvralvw ( ∀ 𝑦𝑥 ( 𝐹 ‘ ( 𝑟 “ { 𝑦 } ) ) = 𝑦 ↔ ∀ 𝑧𝑥 ( 𝐹 ‘ ( 𝑟 “ { 𝑧 } ) ) = 𝑧 )
17 4 cnveqd ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → 𝑟 = 𝑠 )
18 17 imaeq1d ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( 𝑟 “ { 𝑧 } ) = ( 𝑠 “ { 𝑧 } ) )
19 18 fveqeq2d ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( ( 𝐹 ‘ ( 𝑟 “ { 𝑧 } ) ) = 𝑧 ↔ ( 𝐹 ‘ ( 𝑠 “ { 𝑧 } ) ) = 𝑧 ) )
20 2 19 raleqbidv ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( ∀ 𝑧𝑥 ( 𝐹 ‘ ( 𝑟 “ { 𝑧 } ) ) = 𝑧 ↔ ∀ 𝑧𝑎 ( 𝐹 ‘ ( 𝑠 “ { 𝑧 } ) ) = 𝑧 ) )
21 16 20 syl5bb ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( ∀ 𝑦𝑥 ( 𝐹 ‘ ( 𝑟 “ { 𝑦 } ) ) = 𝑦 ↔ ∀ 𝑧𝑎 ( 𝐹 ‘ ( 𝑠 “ { 𝑧 } ) ) = 𝑧 ) )
22 10 21 anbi12d ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 ( 𝐹 ‘ ( 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ↔ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 ( 𝐹 ‘ ( 𝑠 “ { 𝑧 } ) ) = 𝑧 ) ) )
23 7 22 anbi12d ( ( 𝑥 = 𝑎𝑟 = 𝑠 ) → ( ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 ( 𝐹 ‘ ( 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) ↔ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 ( 𝐹 ‘ ( 𝑠 “ { 𝑧 } ) ) = 𝑧 ) ) ) )
24 23 cbvopabv { ⟨ 𝑥 , 𝑟 ⟩ ∣ ( ( 𝑥𝐴𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦𝑥 ( 𝐹 ‘ ( 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } = { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 ( 𝐹 ‘ ( 𝑠 “ { 𝑧 } ) ) = 𝑧 ) ) }
25 1 24 eqtri 𝑊 = { ⟨ 𝑎 , 𝑠 ⟩ ∣ ( ( 𝑎𝐴𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧𝑎 ( 𝐹 ‘ ( 𝑠 “ { 𝑧 } ) ) = 𝑧 ) ) }