Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fr0 | ⊢ 𝑅 Fr ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffr2 | ⊢ ( 𝑅 Fr ∅ ↔ ∀ 𝑥 ( ( 𝑥 ⊆ ∅ ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) ) | |
| 2 | ss0 | ⊢ ( 𝑥 ⊆ ∅ → 𝑥 = ∅ ) | |
| 3 | 2 | a1d | ⊢ ( 𝑥 ⊆ ∅ → ( ¬ ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ → 𝑥 = ∅ ) ) |
| 4 | 3 | necon1ad | ⊢ ( 𝑥 ⊆ ∅ → ( 𝑥 ≠ ∅ → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) ) |
| 5 | 4 | imp | ⊢ ( ( 𝑥 ⊆ ∅ ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) |
| 6 | 1 5 | mpgbir | ⊢ 𝑅 Fr ∅ |