Description: The initial value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996)
Ref | Expression | ||
---|---|---|---|
Assertion | fr0g | ⊢ ( 𝐴 ∈ 𝐵 → ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ ∅ ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano1 | ⊢ ∅ ∈ ω | |
2 | fvres | ⊢ ( ∅ ∈ ω → ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ ∅ ) = ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ ∅ ) = ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) |
4 | rdg0g | ⊢ ( 𝐴 ∈ 𝐵 → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = 𝐴 ) | |
5 | 3 4 | eqtrid | ⊢ ( 𝐴 ∈ 𝐵 → ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ ∅ ) = 𝐴 ) |