Description: The initial value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fr0g | ⊢ ( 𝐴 ∈ 𝐵 → ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ ∅ ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano1 | ⊢ ∅ ∈ ω | |
| 2 | fvres | ⊢ ( ∅ ∈ ω → ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ ∅ ) = ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ ∅ ) = ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) |
| 4 | rdg0g | ⊢ ( 𝐴 ∈ 𝐵 → ( rec ( 𝐹 , 𝐴 ) ‘ ∅ ) = 𝐴 ) | |
| 5 | 3 4 | eqtrid | ⊢ ( 𝐴 ∈ 𝐵 → ( ( rec ( 𝐹 , 𝐴 ) ↾ ω ) ‘ ∅ ) = 𝐴 ) |