| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tpex | ⊢ { 𝐵 ,  𝐶 ,  𝐷 }  ∈  V | 
						
							| 2 | 1 | a1i | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  { 𝐵 ,  𝐶 ,  𝐷 }  ∈  V ) | 
						
							| 3 |  | simpl | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  𝑅  Fr  𝐴 ) | 
						
							| 4 |  | df-tp | ⊢ { 𝐵 ,  𝐶 ,  𝐷 }  =  ( { 𝐵 ,  𝐶 }  ∪  { 𝐷 } ) | 
						
							| 5 |  | simpr1 | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  𝐵  ∈  𝐴 ) | 
						
							| 6 |  | simpr2 | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  𝐶  ∈  𝐴 ) | 
						
							| 7 | 5 6 | prssd | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  { 𝐵 ,  𝐶 }  ⊆  𝐴 ) | 
						
							| 8 |  | simpr3 | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  𝐷  ∈  𝐴 ) | 
						
							| 9 | 8 | snssd | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  { 𝐷 }  ⊆  𝐴 ) | 
						
							| 10 | 7 9 | unssd | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ( { 𝐵 ,  𝐶 }  ∪  { 𝐷 } )  ⊆  𝐴 ) | 
						
							| 11 | 4 10 | eqsstrid | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  { 𝐵 ,  𝐶 ,  𝐷 }  ⊆  𝐴 ) | 
						
							| 12 | 5 | tpnzd | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  { 𝐵 ,  𝐶 ,  𝐷 }  ≠  ∅ ) | 
						
							| 13 |  | fri | ⊢ ( ( ( { 𝐵 ,  𝐶 ,  𝐷 }  ∈  V  ∧  𝑅  Fr  𝐴 )  ∧  ( { 𝐵 ,  𝐶 ,  𝐷 }  ⊆  𝐴  ∧  { 𝐵 ,  𝐶 ,  𝐷 }  ≠  ∅ ) )  →  ∃ 𝑥  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝑥 ) | 
						
							| 14 | 2 3 11 12 13 | syl22anc | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ∃ 𝑥  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝑥 ) | 
						
							| 15 |  | breq2 | ⊢ ( 𝑥  =  𝐵  →  ( 𝑦 𝑅 𝑥  ↔  𝑦 𝑅 𝐵 ) ) | 
						
							| 16 | 15 | notbid | ⊢ ( 𝑥  =  𝐵  →  ( ¬  𝑦 𝑅 𝑥  ↔  ¬  𝑦 𝑅 𝐵 ) ) | 
						
							| 17 | 16 | ralbidv | ⊢ ( 𝑥  =  𝐵  →  ( ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝑥  ↔  ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐵 ) ) | 
						
							| 18 |  | breq2 | ⊢ ( 𝑥  =  𝐶  →  ( 𝑦 𝑅 𝑥  ↔  𝑦 𝑅 𝐶 ) ) | 
						
							| 19 | 18 | notbid | ⊢ ( 𝑥  =  𝐶  →  ( ¬  𝑦 𝑅 𝑥  ↔  ¬  𝑦 𝑅 𝐶 ) ) | 
						
							| 20 | 19 | ralbidv | ⊢ ( 𝑥  =  𝐶  →  ( ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝑥  ↔  ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐶 ) ) | 
						
							| 21 |  | breq2 | ⊢ ( 𝑥  =  𝐷  →  ( 𝑦 𝑅 𝑥  ↔  𝑦 𝑅 𝐷 ) ) | 
						
							| 22 | 21 | notbid | ⊢ ( 𝑥  =  𝐷  →  ( ¬  𝑦 𝑅 𝑥  ↔  ¬  𝑦 𝑅 𝐷 ) ) | 
						
							| 23 | 22 | ralbidv | ⊢ ( 𝑥  =  𝐷  →  ( ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝑥  ↔  ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐷 ) ) | 
						
							| 24 | 17 20 23 | rextpg | ⊢ ( ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 )  →  ( ∃ 𝑥  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝑥  ↔  ( ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐵  ∨  ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐶  ∨  ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐷 ) ) ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ( ∃ 𝑥  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝑥  ↔  ( ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐵  ∨  ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐶  ∨  ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐷 ) ) ) | 
						
							| 26 | 14 25 | mpbid | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ( ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐵  ∨  ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐶  ∨  ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐷 ) ) | 
						
							| 27 |  | snsstp3 | ⊢ { 𝐷 }  ⊆  { 𝐵 ,  𝐶 ,  𝐷 } | 
						
							| 28 |  | snssg | ⊢ ( 𝐷  ∈  𝐴  →  ( 𝐷  ∈  { 𝐵 ,  𝐶 ,  𝐷 }  ↔  { 𝐷 }  ⊆  { 𝐵 ,  𝐶 ,  𝐷 } ) ) | 
						
							| 29 | 8 28 | syl | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ( 𝐷  ∈  { 𝐵 ,  𝐶 ,  𝐷 }  ↔  { 𝐷 }  ⊆  { 𝐵 ,  𝐶 ,  𝐷 } ) ) | 
						
							| 30 | 27 29 | mpbiri | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  𝐷  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ) | 
						
							| 31 |  | breq1 | ⊢ ( 𝑦  =  𝐷  →  ( 𝑦 𝑅 𝐵  ↔  𝐷 𝑅 𝐵 ) ) | 
						
							| 32 | 31 | notbid | ⊢ ( 𝑦  =  𝐷  →  ( ¬  𝑦 𝑅 𝐵  ↔  ¬  𝐷 𝑅 𝐵 ) ) | 
						
							| 33 | 32 | rspcv | ⊢ ( 𝐷  ∈  { 𝐵 ,  𝐶 ,  𝐷 }  →  ( ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐵  →  ¬  𝐷 𝑅 𝐵 ) ) | 
						
							| 34 | 30 33 | syl | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ( ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐵  →  ¬  𝐷 𝑅 𝐵 ) ) | 
						
							| 35 |  | snsstp1 | ⊢ { 𝐵 }  ⊆  { 𝐵 ,  𝐶 ,  𝐷 } | 
						
							| 36 |  | snssg | ⊢ ( 𝐵  ∈  𝐴  →  ( 𝐵  ∈  { 𝐵 ,  𝐶 ,  𝐷 }  ↔  { 𝐵 }  ⊆  { 𝐵 ,  𝐶 ,  𝐷 } ) ) | 
						
							| 37 | 5 36 | syl | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ( 𝐵  ∈  { 𝐵 ,  𝐶 ,  𝐷 }  ↔  { 𝐵 }  ⊆  { 𝐵 ,  𝐶 ,  𝐷 } ) ) | 
						
							| 38 | 35 37 | mpbiri | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  𝐵  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ) | 
						
							| 39 |  | breq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦 𝑅 𝐶  ↔  𝐵 𝑅 𝐶 ) ) | 
						
							| 40 | 39 | notbid | ⊢ ( 𝑦  =  𝐵  →  ( ¬  𝑦 𝑅 𝐶  ↔  ¬  𝐵 𝑅 𝐶 ) ) | 
						
							| 41 | 40 | rspcv | ⊢ ( 𝐵  ∈  { 𝐵 ,  𝐶 ,  𝐷 }  →  ( ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐶  →  ¬  𝐵 𝑅 𝐶 ) ) | 
						
							| 42 | 38 41 | syl | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ( ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐶  →  ¬  𝐵 𝑅 𝐶 ) ) | 
						
							| 43 |  | snsstp2 | ⊢ { 𝐶 }  ⊆  { 𝐵 ,  𝐶 ,  𝐷 } | 
						
							| 44 |  | snssg | ⊢ ( 𝐶  ∈  𝐴  →  ( 𝐶  ∈  { 𝐵 ,  𝐶 ,  𝐷 }  ↔  { 𝐶 }  ⊆  { 𝐵 ,  𝐶 ,  𝐷 } ) ) | 
						
							| 45 | 6 44 | syl | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ( 𝐶  ∈  { 𝐵 ,  𝐶 ,  𝐷 }  ↔  { 𝐶 }  ⊆  { 𝐵 ,  𝐶 ,  𝐷 } ) ) | 
						
							| 46 | 43 45 | mpbiri | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  𝐶  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ) | 
						
							| 47 |  | breq1 | ⊢ ( 𝑦  =  𝐶  →  ( 𝑦 𝑅 𝐷  ↔  𝐶 𝑅 𝐷 ) ) | 
						
							| 48 | 47 | notbid | ⊢ ( 𝑦  =  𝐶  →  ( ¬  𝑦 𝑅 𝐷  ↔  ¬  𝐶 𝑅 𝐷 ) ) | 
						
							| 49 | 48 | rspcv | ⊢ ( 𝐶  ∈  { 𝐵 ,  𝐶 ,  𝐷 }  →  ( ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐷  →  ¬  𝐶 𝑅 𝐷 ) ) | 
						
							| 50 | 46 49 | syl | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ( ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐷  →  ¬  𝐶 𝑅 𝐷 ) ) | 
						
							| 51 | 34 42 50 | 3orim123d | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ( ( ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐵  ∨  ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐶  ∨  ∀ 𝑦  ∈  { 𝐵 ,  𝐶 ,  𝐷 } ¬  𝑦 𝑅 𝐷 )  →  ( ¬  𝐷 𝑅 𝐵  ∨  ¬  𝐵 𝑅 𝐶  ∨  ¬  𝐶 𝑅 𝐷 ) ) ) | 
						
							| 52 | 26 51 | mpd | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ( ¬  𝐷 𝑅 𝐵  ∨  ¬  𝐵 𝑅 𝐶  ∨  ¬  𝐶 𝑅 𝐷 ) ) | 
						
							| 53 |  | 3ianor | ⊢ ( ¬  ( 𝐷 𝑅 𝐵  ∧  𝐵 𝑅 𝐶  ∧  𝐶 𝑅 𝐷 )  ↔  ( ¬  𝐷 𝑅 𝐵  ∨  ¬  𝐵 𝑅 𝐶  ∨  ¬  𝐶 𝑅 𝐷 ) ) | 
						
							| 54 | 52 53 | sylibr | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ¬  ( 𝐷 𝑅 𝐵  ∧  𝐵 𝑅 𝐶  ∧  𝐶 𝑅 𝐷 ) ) | 
						
							| 55 |  | 3anrot | ⊢ ( ( 𝐷 𝑅 𝐵  ∧  𝐵 𝑅 𝐶  ∧  𝐶 𝑅 𝐷 )  ↔  ( 𝐵 𝑅 𝐶  ∧  𝐶 𝑅 𝐷  ∧  𝐷 𝑅 𝐵 ) ) | 
						
							| 56 | 54 55 | sylnib | ⊢ ( ( 𝑅  Fr  𝐴  ∧  ( 𝐵  ∈  𝐴  ∧  𝐶  ∈  𝐴  ∧  𝐷  ∈  𝐴 ) )  →  ¬  ( 𝐵 𝑅 𝐶  ∧  𝐶 𝑅 𝐷  ∧  𝐷 𝑅 𝐵 ) ) |