Metamath Proof Explorer


Theorem fracbas

Description: The base of the field of fractions. (Contributed by Thierry Arnoux, 10-May-2025)

Ref Expression
Hypotheses fracbas.1 𝐵 = ( Base ‘ 𝑅 )
fracbas.2 𝐸 = ( RLReg ‘ 𝑅 )
fracbas.3 𝐹 = ( Frac ‘ 𝑅 )
fracbas.4 = ( 𝑅 ~RL 𝐸 )
Assertion fracbas ( ( 𝐵 × 𝐸 ) / ) = ( Base ‘ 𝐹 )

Proof

Step Hyp Ref Expression
1 fracbas.1 𝐵 = ( Base ‘ 𝑅 )
2 fracbas.2 𝐸 = ( RLReg ‘ 𝑅 )
3 fracbas.3 𝐹 = ( Frac ‘ 𝑅 )
4 fracbas.4 = ( 𝑅 ~RL 𝐸 )
5 eqid ( 0g𝑅 ) = ( 0g𝑅 )
6 eqid ( .r𝑅 ) = ( .r𝑅 )
7 eqid ( -g𝑅 ) = ( -g𝑅 )
8 eqid ( 𝐵 × 𝐸 ) = ( 𝐵 × 𝐸 )
9 fracval ( Frac ‘ 𝑅 ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) )
10 2 oveq2i ( 𝑅 RLocal 𝐸 ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) )
11 9 3 10 3eqtr4i 𝐹 = ( 𝑅 RLocal 𝐸 )
12 id ( 𝑅 ∈ V → 𝑅 ∈ V )
13 2 1 rrgss 𝐸𝐵
14 13 a1i ( 𝑅 ∈ V → 𝐸𝐵 )
15 1 5 6 7 8 11 4 12 14 rlocbas ( 𝑅 ∈ V → ( ( 𝐵 × 𝐸 ) / ) = ( Base ‘ 𝐹 ) )
16 0qs ( ∅ / ) = ∅
17 fvprc ( ¬ 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ∅ )
18 1 17 eqtrid ( ¬ 𝑅 ∈ V → 𝐵 = ∅ )
19 18 xpeq1d ( ¬ 𝑅 ∈ V → ( 𝐵 × 𝐸 ) = ( ∅ × 𝐸 ) )
20 0xp ( ∅ × 𝐸 ) = ∅
21 19 20 eqtrdi ( ¬ 𝑅 ∈ V → ( 𝐵 × 𝐸 ) = ∅ )
22 21 qseq1d ( ¬ 𝑅 ∈ V → ( ( 𝐵 × 𝐸 ) / ) = ( ∅ / ) )
23 fvprc ( ¬ 𝑅 ∈ V → ( Frac ‘ 𝑅 ) = ∅ )
24 3 23 eqtrid ( ¬ 𝑅 ∈ V → 𝐹 = ∅ )
25 24 fveq2d ( ¬ 𝑅 ∈ V → ( Base ‘ 𝐹 ) = ( Base ‘ ∅ ) )
26 base0 ∅ = ( Base ‘ ∅ )
27 25 26 eqtr4di ( ¬ 𝑅 ∈ V → ( Base ‘ 𝐹 ) = ∅ )
28 16 22 27 3eqtr4a ( ¬ 𝑅 ∈ V → ( ( 𝐵 × 𝐸 ) / ) = ( Base ‘ 𝐹 ) )
29 15 28 pm2.61i ( ( 𝐵 × 𝐸 ) / ) = ( Base ‘ 𝐹 )