Step |
Hyp |
Ref |
Expression |
1 |
|
fracbas.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
2 |
|
fracbas.2 |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
3 |
|
fracbas.3 |
⊢ 𝐹 = ( Frac ‘ 𝑅 ) |
4 |
|
fracbas.4 |
⊢ ∼ = ( 𝑅 ~RL 𝐸 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
6 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
7 |
|
eqid |
⊢ ( -g ‘ 𝑅 ) = ( -g ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( 𝐵 × 𝐸 ) = ( 𝐵 × 𝐸 ) |
9 |
|
fracval |
⊢ ( Frac ‘ 𝑅 ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) ) |
10 |
2
|
oveq2i |
⊢ ( 𝑅 RLocal 𝐸 ) = ( 𝑅 RLocal ( RLReg ‘ 𝑅 ) ) |
11 |
9 3 10
|
3eqtr4i |
⊢ 𝐹 = ( 𝑅 RLocal 𝐸 ) |
12 |
|
id |
⊢ ( 𝑅 ∈ V → 𝑅 ∈ V ) |
13 |
2 1
|
rrgss |
⊢ 𝐸 ⊆ 𝐵 |
14 |
13
|
a1i |
⊢ ( 𝑅 ∈ V → 𝐸 ⊆ 𝐵 ) |
15 |
1 5 6 7 8 11 4 12 14
|
rlocbas |
⊢ ( 𝑅 ∈ V → ( ( 𝐵 × 𝐸 ) / ∼ ) = ( Base ‘ 𝐹 ) ) |
16 |
|
0qs |
⊢ ( ∅ / ∼ ) = ∅ |
17 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ∅ ) |
18 |
1 17
|
eqtrid |
⊢ ( ¬ 𝑅 ∈ V → 𝐵 = ∅ ) |
19 |
18
|
xpeq1d |
⊢ ( ¬ 𝑅 ∈ V → ( 𝐵 × 𝐸 ) = ( ∅ × 𝐸 ) ) |
20 |
|
0xp |
⊢ ( ∅ × 𝐸 ) = ∅ |
21 |
19 20
|
eqtrdi |
⊢ ( ¬ 𝑅 ∈ V → ( 𝐵 × 𝐸 ) = ∅ ) |
22 |
21
|
qseq1d |
⊢ ( ¬ 𝑅 ∈ V → ( ( 𝐵 × 𝐸 ) / ∼ ) = ( ∅ / ∼ ) ) |
23 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( Frac ‘ 𝑅 ) = ∅ ) |
24 |
3 23
|
eqtrid |
⊢ ( ¬ 𝑅 ∈ V → 𝐹 = ∅ ) |
25 |
24
|
fveq2d |
⊢ ( ¬ 𝑅 ∈ V → ( Base ‘ 𝐹 ) = ( Base ‘ ∅ ) ) |
26 |
|
base0 |
⊢ ∅ = ( Base ‘ ∅ ) |
27 |
25 26
|
eqtr4di |
⊢ ( ¬ 𝑅 ∈ V → ( Base ‘ 𝐹 ) = ∅ ) |
28 |
16 22 27
|
3eqtr4a |
⊢ ( ¬ 𝑅 ∈ V → ( ( 𝐵 × 𝐸 ) / ∼ ) = ( Base ‘ 𝐹 ) ) |
29 |
15 28
|
pm2.61i |
⊢ ( ( 𝐵 × 𝐸 ) / ∼ ) = ( Base ‘ 𝐹 ) |